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Abstract

Parkinson’s Disease (PD) is a progressive neurodegenerative dis-
order of the nervous system with a high rate of misdiagnosis. In
this paper, we propose a Grammatical Evolution (GE) approach for
classifying PD patients, that uses hinge loss as a surrogate fitness
function. We compare our approach to standard GE using accuracy
as its fitness function. Our results demonstrate that the surrogate
fitness approach consistently produces models with better accuracy
and reduced complexity. These results highlight the potential of
using our approach as a powerful tool for developing trustworthy
Al applications in the medical domain.
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1 Introduction

Parkinson’s Disease (PD) is an often misdiagnosed neurodegen-
erative disorder of the nervous system, due to the similarity of
symptoms with other neurological and movement disorders, and
the subtle onset of such symptoms. In the clinical diagnosis of PD,
up to 15% of patients are misdiagnosed, with the misclassification
rate of non-specialists being even higher [3]. This suggests that
doctors, especially non-specialists, may need other tools to assist
them in clinical diagnosis.

Previous research explored different features and methods to
detect PD patients. In clinical diagnosis, the first step is to detect if
the patient has the presence of bradykinesia combined with either
rest tremor, rigidity, or both [3]. This means that people with PD
may move slightly slower than healthy people, and could have
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tremors or rigidity in their bodies. Other approaches for PD de-
tection include comparing handwriting samples [4], walking gait
[15], or speech analysis [16], as approximately 90% of PD patients
suffer vocal impairment [24]. To build a system that helps detect
PD patients, we frame the task as a binary classification problem,
where Evolutionary Computation (EC) can be applied to generate
interpretable models.

Genetic Programming (GP) is an EC method that can be used
to generate interpretable models, and researchers show a strong
interest in using it to solve real-world problems. However, when
applying GP to binary classification, using accuracy as the fitness
function of models provides a discrete fitness landscape, which is
challenging to navigate. Our approach is to employ a grammar-
based GP system, Grammatical Evolution (GE), using Hinge Loss
as a surrogate fitness function. This type of approach is sometimes
used with EC to enhance efficiency, improve performance or reduce
computational cost [12].

We compared both approaches (using accuracy versus using
Hinge Loss) under a large set of experimental configurations, using
the Gait in Parkinson’s Disease dataset [8]. Our results show that
using the loss function consistently produces models with better
performance and/or reduced complexity. Analysis of the evolution-
ary process shows that this is due to the much better evolvability
provided by the loss function.

The structure of this paper is as follows. In Section 2, we review
the advantages of using surrogate fitness functions in GP. In Section
3, we introduce the accuracy and hinge loss fitness functions. In
Section 4, we introduce our approach, including the dataset and the
experimental setup. In Section 5, we analyse the results obtained,
discussing the model performance, complexity, and evolvability.
Finally, in the last Section, we summarise the results and outline
potential directions for future research.

2 Surrogate Fitness Measures for GP

Surrogate methods can be used with GP for several reasons: re-
ducing computational cost [12], improving performance [9], and
reducing model complexity [29].

In evolutionary algorithms, the fitness function is often the most
time-consuming process, especially when it involves complex data
or individuals [12]. Previous studies have demonstrated that rather
than calculating the fitness of each solution, we can estimate it
instead, using surrogate methods, resulting in a similar performance
in a fraction of the original time [13, 17, 29]. This technique is
particularly useful in the case of limited computational resources
or large-scale problems.
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Furthermore, surrogate approaches can enhance model perfor-
mance by improving the efficiency of exploration of the search
space. In symbolic regression, using a surrogate fitness function
has been proven to yield better performance even in the presence
of noise [9, 27]. This improvement is primarily due to the ability
of surrogate functions to smooth fitness landscapes and enable
the discovery of better-performing solutions over time. This also
tends to improve the generalisation of the resulting models and
may reduce overfitting.

Moreover, employing surrogate fitness functions can improve
the interpretability of the models generated by GP. When a surro-
gate function is used, GP models tend to evolve simpler solutions
compared to traditional fitness functions [29], and also tend to
evolve more compact rules in a dynamic scheduling problem [25].
This tendency towards simplicity and compactness can lead to the
generation of more interpretable models. In medical diagnosis or
clinical diagnosis applications, transparent models are essential,
which can help doctors understand why models give some sug-
gestions, therefore, the ability to generate interpretable models is
valuable.

3 Accuracy and Hinge Loss

When using evolutionary algorithms in binary classification prob-
lems, we typically define a threshold [19], and then compare the
resulting model value and the threshold value. If the model value is
bigger than the threshold value, then we predict the positive class,
otherwise, we predict the negative class.

Accuracy (ACC) is broadly used as a fitness function in GP clas-
sification problems (e.g. [1]). ACC is measured as follows:

TP+TN
TP+TN+FP+FN

where TP is a True Positive (correct positive class prediction), TN
is a True Negative (correct negative class prediction), FP is a False
Positive (incorrect positive class prediction), and FN is a False
Negative (incorrect negative class prediction).

Ifthe dataset is class unbalanced, as is the case with many medical
datasets, then ACC may not be a reliable measure, and alternative
fitness functions can be used, based on the distance of predicted
value from actual value [5, 14, 22].

One such measure is the Hinge Loss (HL) function, which we
use in our experiments. HL has been shown to achieve a better
result than square loss in machine learning classification problems
[23], and also can get a better result in autism spectrum disorder
distinction than cross-entropy [6]. The HL is measured as follows:

ACC = (1)

L(y) =max (0,1 -y Xz) (2)

where y is the actual class to predict (y € {-1,1}), and z is the
output model value (z € (—00, 00)).

The output value of the HL function according to the value of
z is shown in Figure 1, for the positive class case. It shows that
if the incorrect label was predicted (z <= 0), the loss function
returns a value in the range [1, ), depending on the scale of the
mis-prediction. However, if the correct label was predicted, an error
in the range [0, 1) can still be returned, which implies that the HL
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function can be used to increase the distance between the closer
points to the decision boundary, as opposed to the ACC function,
which merely counts correct vs. incorrect predictions.

loss value L(y) changes, when y=1

' L(y)

('11 2)

(0,1)

Figure 1: The loss function value changes with the predicted
value for the target y equal to 1; the x-axis is the predicted
value of the model z and the y-axis is the value of the loss
function L (y); a vertically mirrored plot can be observed
when y = -1.

The use of the HL function can be beneficial when evaluating
models for disease detection, by increasing the distance of pos-
itive and negative samples from the decision boundary, as used
in Alzheimer’s disease detection to construct more robust bound-
aries [10]. An example has been provided to discuss the difference
between ACC and HL, and is shown in Figure 2. It represents a
hypothetical binary classification problem, with 34 points for each
class, and with two lines representing two different classification
boundaries. Both lines can classify these points well (ACC is 100%
for both lines), but the classification boundary of line 2 lies closer
to the data points, and is both more complex, and more likely to
lead to overfitting. The robustness of both lines can be assessed
using HL (line 1 has an error value of 0.005, whereas line 2 has an
error value of 0.059).

The use of the HL function can improve disease detection accu-
racy and reduce the possibility of misclassification. The trustwor-
thiness of models can lead to further improvement by increasing
the robustness of the decision boundary.

4 Experiments
4.1 Dataset

The dataset we used is Gait in Parkinson’s Disease 8], in which
vertical ground reaction forces were recorded from walking subjects.
This pressure data was obtained from 16 sensors, with eight sensors
on each foot (see their distribution in Figure 3), and the data were
recorded at 100 samples per second. Alongside the data from the 16
sensors, the dataset also contains the total force under the left and
right foot respectively. The dataset contains data from 166 people,
93 of whom are PD patients.
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Figure 2: Comparing HL and ACC metrics in the boundary
example.
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Figure 3: Sensor distribution on the left and right foot; coor-
dinate origin is the centre of the human body.

We extracted features based on existing research [28]. For each
person, we divided the pressure data by their weight to normalise
it; there were three people (two with PD and one healthy) with-
out weight data, therefore, we removed them from the data. We
segmented the data into intervals of 40 seconds, and removed the
first and last second, resulting in 38 seconds of data in each data
item. For each item, we set a time window to extract features that
contain 5 seconds of data, with 3.5 seconds of data overlapping
for two adjacent windows. We extracted 45 features for each time
window, and the descriptions for each feature are shown in Table 1.
After this process, there were 2728 samples for PD patients and 1991
samples for healthy observations. Finally, we randomly dropped
some samples from PD patients to ensure class balance.

2516

The original dataset was split using a subject-dependent ap-
proach for several reasons. First, several prior studies working with
this dataset adopted the same approach [18, 26, 28]. Second, gait
pressure presents individual characteristics [21], which could be
more challenging in subject-independent. Finally, the limitation
samples of the original dataset.

We allocated 25% for the testing dataset (994 items), and 75% for
the training dataset. For the training dataset, we split 20% for the
validation dataset (596 items), and assigned the remaining data to
the training dataset (2392 items). We used the training dataset to
train our model, the validation dataset for model selection, and the
testing dataset to test model performance.

4.2 Grammatical Evolution Setup

In this study, we used Grammatical Evolution [20], a grammar-
based variant of GP, where the syntax of solutions is specified
using a Backus-Naur Form grammar. We used a customised version
of the PonyGE2 library [7], evolving models with subtree genetic
operators (crossover and mutation) applied to the derivation trees.

We set the fitness function to HL or ACC separately, and the rest
of hyperparameters are shown in Table 2. We used the maximum
tree depth limit to control model performance and complexity,
so we varied it from 8 to 90. We ran each maximum tree depth
configuration 50 times.

4.2.1 Grammar. In our experiment, the grammar used is shown in
Figure 4. In order to improve the interpretability of the resulting
model, the arithmetic operations in our grammar only include
addition, subtraction, multiplication, and protected division. <e> is
the root node, and GE will begin at this node to select an operation
structure, variable, or constant. The <v> symbol maps to the 45
features used in the PD dataset. Finally, <c> represents constants
to use in the model (eight values between -1 and 1).

Figure 4: Grammar
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Table 1: Depiction of 45 features

Feature Type Description Number of Features
Average Pressure average pressure for each data in this time window 18
Coeflicient of Variation the ratio of the standard deviation to the mean for each 18
data in this time window
Asymmetry Index the asymmetry index can be represented by: 9
|Fleft - F”-ghti /Fiefe, where Fir; denotes the average
pressures for the left foot and F,.;5p; denotes the
average pressures for the right foot
Table 2: All hyperparameters used in the PonyGE2 library
hyperparameter value hyperparameter value
crossover subtree mutate_duplicates True
crossover_probability  0.75 no_crossover_invalids True
initialisation rhh no_mutation_invalids True
invalid_selection False population_size 1000
min_init_tree_depth 3 replacement generational
max_init_tree_depth 5 selection tournament
max_tree nodes None tournament_size 10
mutation subtree elite_size 10
mutation_events 1 generations 500
max_tree_depth 8-90

4.2.2  Model Selection Strategy. Traditionally in GE, the best train-
ing model after 50 generations is typically chosen as the best model.
However, given the high dimensionality of the PD dataset (45 fea-
tures), a longer evolutionary process is required to discover accurate
models. As a result, we extended the number of generations to 500.
A downside of extending the evolutionary process for much longer
is that it tends to increase the complexity of the models, or lead to
overfitting. In order to control this, we used the validation dataset.
At the end of each generation, we tested the best training fitness
model using the validation dataset through accuracy, whether the
fitness uses ACC or HL, and after 500 generations, we selected the
model that obtained the highest ACC on the validation dataset. We
do this to potentially increase the testing performance of the final
model, as well as to reduce its complexity (if it is chosen from an
earlier generation).

5 Result & Analysis

5.1 Performance

To evaluate the performance of ACC-evolved and HL-evolved mod-
els, we measure the final training and test accuracy of the best
model from each run, using the ACC function. The results for all
tree depths are shown in Figure 5.

The plot shows that at tree depth 8, the HL method exhibits
similar training performance to the ACC-evolved model, and better
testing performance. From depth 10 onwards, this is even more
evident, both for training and test performance. The difference in
performance of the resulting models is quite drastic. HL-evolved
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models always exhibit better performance than ACC-evolved mod-
els of any depth.

The accuracy of ACC-evolved models appears to hit a plateau for
experimental setups with depth greater than 15, with little accuracy
improvements beyond this depth limit. Similarly, for the HL-evolved
models, their performance plateaus, but at a much larger depth limit
(i.e., for setups with a depth limit of 40 and greater). This is probably
due to the vast increase in the search space, but it could also be
due to the evolvability of the fitness functions used, as discussed in
Section 5.4.

We tested the statistical significance of these results for all tree
depths. As the performance distribution across runs cannot be
assumed normal (see Section 5.2), we used the non-parametric
Brunner-Munzel test, which does not require the assumption of
equal variances to measure location shift. The resulting p-values
are shown in Table 3. They clearly show that, for every tree depth,
the HL-evolved results are always statistically significantly better
(p < 5%) than those from ACC-evolved runs, both for training and
test.

5.2 Consistency

Method performance consistency means that if we train models
using the same experimental setup, the resulting models should
have a similar performance. In the case of heuristic methods such as
EC approaches, if we only change the random seed of an experiment,
the resulting model should ideally perform similarly.
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Figure 5: Performance results from different maximum tree
depths, for ACC- and HL-evolved models. The y-axis shows
the accuracy of the final models, as measured with the ACC
function. Each tree depth shows the results from 50 indepen-
dent runs.

Table 3: Brunner-Munzel Test Result

Tree Depth  Training Testing
8 0.007306 3.240e-14
10 1.361e-13 3.528e-32
15 2.103e-21 1.618e-50
20 2.664e-54 5.095e-71
30 9.001e-59 3.873e-84
40 5.720e-79 1.016e-64
50 7.643e-44 4.242e-59
60 4.699e-33  1.404e-37
70 2.003e-21 1.051e-29
80 3.976e-24 1.643e-34
90 6.949e-21  2.640e-28

To measure this, we use the Shapiro-Wilk test to measure the
normality of (train and test) model performances from the 50 dif-
ferent runs of each experimental setup. If the resulting model per-
formances are approximately normally distributed, then it means
that the method is reliable, and is not overly dependent on the
random seed used. Otherwise, several runs are required to choose
more accurate models, leading to random seeds being an actual
hyperparameter for the methodology.
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The run consistency measurements are shown in Table 4, for all
tree depths, with p-values lower than 5% (shown in bold) indicat-
ing a strongly normal distribution. We can see that for nearly all
tree depths, ACC-evolved runs are not normal distributed, whereas
approximatively half of the HL-evolved runs follow a normal dis-
tribution.

Table 4: Shapiro-Wilk Test Result

Training Testing
Tree Depth ACC HL  ACC HL
8 0.814 0.017 0.636 0.004
10 0.111 0951 0.835 0.610
15 0.508 0.889 0.462 0.883
20 0.053 0486 0.716 0.033
30 0.546 0341 0.581 0.407
40 0.091 0.001 0.079 0.293
50 0.989 0.001 0.295 0.070
60 0.709 0.089 0.519  0.020
70 0.349 0.012 0.006 0.311
80 0.249 0.006 0.006 0.210
90 0.500 0.015 0.301 0.004

5.3 Complexity

We estimate the complexity of models by simplifying their symbolic
representation, and then counting the number of symbols in the
resulting equation, we use SymPy library to achieve this function.
For example, if the resulting model is x0 — x0 + x1 + 1 + 1, then the
simplified model is x1 + 2, which means that its simplified size is 3.

To compare the size of the resulting models for both approaches,
we plot the distribution of simplified sizes for each tree depth; this
is shown in Figure 6. The plot shows that for small tree depths, the
sizes of ACC- and HL-evolved models are comparable. As the tree
depth increases, the complexity of the resulting models increases for
both approaches, with HL-evolved models becoming much more
complex for large tree depths (the median size of ACC-evolved
models for tree depth 90 is 245.5, whereas that of HL-evolved models
is 1603).

Given the results from Figure 5, one could claim that there is
a clear performance/complexity trade-off between the ACC and
HL approaches. To test this assessment, we plotted the size and
performance of every single run, for both approaches, across all
tree depths; this is shown in Figure 7. These results are not grouped
by tree depths, meaning that two models of size 500 could come
from different tree depths.

We can see that as model complexity increases, the performance
of models also increases, up to an approximate size of 500 symbols,
after which more complex models do not result in better perfor-
mance. Much more importantly, we can clearly observe that, for
similar size models (which can come from different tree depths), HL-
evolved models are nearly always more accurate than ACC-evolved
models. Conversely, if we focus on same model performance, then
we can clearly see that HL-evolved models are less complex than
ACC-evolved models. So using HL as a surrogate fitness function
leads to both better performance, and more interpretable models.
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Figure 6: Simplified size distributions across 50 runs, for all
tree depths. Due to the large differences across tree depths,
the y-axis uses a logarithmic scale.
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Figure 7: Model size and corresponding performance for
training and testing data. There are a total of 1100 points
on each plot, 550 for each approach, which are the best mod-
els from each run (50 runs total) from each depth (11 depths
in total).

5.4 Evolvability

The evolvability of solutions in GP is one of the key factors that
can influence the resulting model performance. In this paper, we
use two simple ways to analyse evolvability. First, we assume that
if more complex models are evolved, then a corresponding increase
in performance should be observed. As seen in Section 5.3, this is
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much more the case when using HL as a fitness function, when
compared to using ACC as the fitness function.

Another way to measure evolvability is to analyse the number
of fitness improvements across each run, for both approaches. To
do this, for each run, we counted the number of generations where
there was a fitness improvement, we called this “jump count”. For
ACC-evolved models, this means an increase of the number of
correctly-classified points; for HL-evolved models, this means a
reduction of the Hinge Loss error value. This is shown in Figure 8,
for all tree depths.

Jump count for different tree depths
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== ACC
400
% % ‘
- ° (o]
€ 300 o
S
o
£ 200 8 8 S
© o
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%%% é
7% 10 15 20 30 40 50 60 70 80 9
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Figure 8: Number of fitness improvements (jump count) for
all tree depths, for ACC- and HL-evolved models. Each tree
depth shows the results from 50 independent runs.

We can clearly see that HL runs have much higher jump counts
than ACC runs, across all tree depths. Also, as the tree depth in-
creases, HL runs see an increase in number of fitness improvements,
all the way to depth 40, where more than 80% of all generations
create better performing models. This is in contrast to ACC runs,
where less than 20% of generations create better models, with a
slight increase up to tree depth 15. This suggests that the HL func-
tion can use the expanding search space more effectively than the
ACC function, with the latter showing limited evolvability in this
problem.

This also helps explain why the performance of HL-evolved
models stop increasing after tree depth 40, and tree depth 15 for
ACC-evolved models, as discussed in Section 5.1. For HL, there are
probably not enough generations to continue exploring the search
space, as the fitness function nearly changes at every generation;
for ACC, this is likely because of the limitation of the evolvability
of the fitness function.

6 Conclusion

This paper explored the use of a surrogate fitness measure to evolve
models for the Parkinson’s Disease patient classification problem.
Our results highlight the applicability of the hinge loss function as
a suitable surrogate function in GE, resulting in better performing
and more interpretable models, when compared to using a standard
accuracy fitness measure.

Our analysis shows that using hinge loss provides advantages at
several levels. First, the resulting models are more accurate than
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when using accuracy as the driving fitness function, even though in
the latter case we use the same measure to train and evaluate final
performance. Secondly, statistical testing showed that using hinge
loss produces more consistent results across runs. Thirdly, models
of similar complexity have better performance, and conversely,
models with the same performance have smaller complexity. And
finally, we analysed the evolvability of the hinge loss function,
which helps explain the advantages mentioned.

While these results are encouraging, they relate to a single
dataset, so in future work, we will apply a similar approach to
other medical problems. We will also investigate the effect of our
model selection approach on datasets and/or experimental setups
that are more prone to over-fitting. We know there are multiple
approaches to measuring evolvability, for instance, Price’s theorem
is used to extract the change in the distribution of fitness values
[2] or nonsynonymous to synonymous substitution ratio kg /ks is
used to measure the rate of genetic substitutions in tree-based GP
[11], we will analysis the different their method and our method.

Finally, we currently apply our model selection approach at the
end of the training process, meaning that there is no reduction of
the training effort; we will investigate possible ways to speed up
the model building with validation strategies, and how to integrate
them into our experimental framework.
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