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Abstract
As machine learning algorithms are increasingly employed for crit-
ical decision-making, ensuring algorithmic fairness has become im-
perative. Fairness-awareAutomatedMachine Learning has emerged
as a flexible and effective method for enhancing both model accu-
racy and fairness. However, most existing studies focus on hyperpa-
rameter optimization for a single model. In this study, we frame the
problem as a multi-objective Combined Algorithm Selection and
Hyperparameter Optimization (CASH) problem, aiming to jointly
optimize both accuracy and fairness across a diverse set of machine
learning algorithms and their corresponding hyperparameters. To
address this challenge, we apply Multi-Objective Grammatical Evo-
lution (MOGE). The results demonstrate that MOGE not only effec-
tively identifies models that achieve higher fairness and accuracy,
while also exploring the trade-offs between accuracy and fairness
efficiently.

CCS Concepts
• Applied computing → Multi-criterion optimization and
decision-making; • Computing methodologies → Supervised
learning by classification.
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1 Introduction
The widespread adoption of machine learning has raised concerns
about algorithmic fairness, as models often replicate or amplify bi-
ases, leading to systematical disadvantage for certain demographic
groups[7]. While fairness-aware AutoML has emerged as an ef-
fective approach due to its efficiency and flexibility[15], previous
research has primarily focused on how a single model’s hyper-
parameter optimization (HPO) affects its fairness, neglecting the
potential benefits of broader algorithm selection. Different machine
learning models have unique characteristics, and searching for a
wider range of models has the potential to achieve higher perfor-
mance and fairness outcomes.

This leads to the central research question of this paper: How
does combined algorithm selection and hyperparameter Optimiza-
tion (CASH) affect model accuracy and fairness? We address this
by formulating the problem as a multi-objective CASH task that
simultaneously optimizes accuracy and fairness. We apply multi-
objective grammatical evolution (MOGE) to search the model con-
figuration while generating a set of Pareto optimal solutions that
balance both objectives. The main contributions of this paper in-
clude: (1) To the best of our knowledge, this paper is the first to in-
tegrate algorithmic fairness into the CASH problem. (2) We develop
a novel, human-understandable grammar to represent a feasible
search space, ranging from high-level algorithm selection down to
low-level hyperparameter optimization. (3) We apply MOGE to ex-
plore the Pareto frontier of model configurations, thereby enabling
more effective fairness-accuracy trade-offs.

2 Background
Current fairness-aware AutoML research primarily focuses on HPO
for a single model. These methods incorporate fairness in three
ways: (1) Treating it as a constraint [10, 12]; (2) Including it as a
weighted penalty in the objective function [4, 10, 11]; or (3) Consid-
ering it as an additional objective in multi-objective optimization
[3, 13, 14]. While constraint and weighted methods require difficult
condition setting and only produce single solutions [15], multi-
objective methods are more flexible and generate Pareto frontiers
that better explore accuracy-fairness trade-offs. Our interest in
applying MOGE is motivated by three reasons: (1) Evolutionary
algorithms excel at searching complex model configuration spaces
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[8]; (2) They can freely optimize diverse hierarchical model config-
urations [6]; (3) using grammar allows us to define the search space
for model configurations more flexibly. Meanwhile, existing work
has largely overlooked the potential impact of algorithm selection.
Therefore, we frame the problem as a multi-objective CASH prob-
lem and implement MOGE to create a Pareto frontier of diverse
model configurations which seek to enhance accuracy and fairness.

3 Methodology
3.1 Combined Algorithm Selection and

Hyper-Parameter Optimization for
Accuracy and Fairness

First, we define the task of selecting model configurations to en-
hance accuracy and fairness as a multi-objective CASH problem:

argmax
𝐴∈A,𝜆∈Λ(𝐴)

𝐹 (𝐴, 𝜆) = argmax
𝐴∈A,𝜆∈Λ(𝐴)

(𝑓1 (𝐴, 𝜆), 𝑓2 (𝐴, 𝜆)) (1)

Here, A = {𝐴(1), . . . , 𝐴(𝑛)} denotes a set of candidate machine
learning models. For each model𝐴 ∈ A, 𝜆 is a specific hyperparam-
eter configuration configuration specific to the model 𝐴 in the set
of hyperparameter vectors Λ(𝐴). 𝐹 (𝐴, 𝜆) is a set of objective func-
tions, where 𝑓1 (𝐴, 𝜆) denotes the accuracy, and 𝑓2 (𝐴, 𝜆) denotes the
specified fairness metric.

We use the differences between two commonly used fairness
metrics for different groups to measure the degree of unfairness,
specifically denoted by Average Odds Difference (AOD) and
Statistical Parity Difference (SPD):

AOD =
1
2

(��𝑃 (𝑌 = 1 | 𝑆 = 𝑎,𝑌 = 1) − 𝑃 (𝑌 = 1 | 𝑆 = 𝑏,𝑌 = 1)
��

+
��𝑃 (𝑌 = 1 | 𝑆 = 𝑎,𝑌 = 0) − 𝑃 (𝑌 = 1 | 𝑆 = 𝑏,𝑌 = 0)

��) (2)

SPD =
��𝑃 (𝑌 = 1 | 𝑆 = 𝑎) − 𝑃 (𝑌 = 1 | 𝑆 = 𝑏)

�� (3)
We define𝑌 as the ground truth outcome for binary classification

tasks, 𝑌 as the classifier’s predicted outcome, 𝑆 as the sensitive
attribute, and use 𝑎 and 𝑏 to represent two different groups. In our
experiment, accuracy is the objective we aim to maximize, while the
fairness metric (AOD or SPD) is the objective we seek to minimize.

3.2 Multi-Objective Grammatical Evolution
In this paper, we employ grammatical evolution (GE) [9], a genetic
programming algorithm, which uses context-free grammar to de-
scribe the search space of model configurations. We use MOGEwith
NSGA-II search operator to solve multi-objective CASH problem for
accuracy and fairness. We selected five widely used machine learn-
ing models: Logistic Regression (LR), Decision Tree (DT), K-Nearest
Neighbors (KNN), Multilayer Perceptron (MLP), and Support Vec-
tor Classifier (SVC). The grammar for model configurations search
space is shown in Fig. 1.

4 Experiment
We conducted experiments on three public real-world binary classi-
fication datasets from three different domains: (1)Adult - Census
Income; (2) COMPAS - Correctional Offender Management

Figure 1: The BNF grammar adopted in the study. showing
the high-level architecture that transitions from algorithm
selection to hyperparameter optimization across multiple
layers of the grammar.

Profiling for Alternative Sanctions; and (3) Heart Disease In-
dicators. All datasets were preprocessed by normalizing numerical
features and encoding categorical variables, then split into a train-
ing set (60%), a validation set (20%), and a testing set (20%) using
stratified sampling to maintain class and sensitive attribute (’Sex’)
distributions.

To explore the effectiveness of MOGE in balancing model accu-
racy and fairness, we compare MOGE with five other baselines: (1).
Model performance of candidate models (LR, DT, KNN, MLP, SVC)
with default hyperparameters (Default); (2). Model performance
when optimizing accuracy alone using a single-objective grammat-
ical evolution (SOGE) (Acc Only); (3). Model performance when
optimizing fairness alone using a single-objective grammatical evo-
lution (SOGE) (SPD Only or AOD Only); (4). Model performance
when using random search; (5)Exponentiated Gradient Reduction
[1], a classical in-processing fairness method which returns the best
classifier under certain fairness constraints implemented via the AI
Fairness 360 toolkit [2]. Each setup was repeated 30 times using 30
different seeds for each dataset. We conducted experiments using
the PonyGE2 library (version 0.2.0) [5]. The hyperparameters we
have modified for PonyGE2 are presented in Table 1, while all other
hyperparameters remain at their default settings.
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Table 1: Hyperparameter for Grammatical Evolution

Hyperparameter Value
Generations 250
Population 250
Crossover probability 0.75
Mutation probability 0.1

5 Results
5.1 Limitations of Default Models and SOGE
Figure 2 shows the results of default models and SOGE. We found
that the default models perform very differently, and their per-
formance also varies across different datasets. Meanwhile, SOGE
outperforms default models in achieving its target (whether accu-
racy or fairness). However, Accuracy-focused SOGE often overlooks
fairness and sometimes even results in a significant reduction com-
pared default models. Notably, we observed that when optimizing
for fairness, regardless of which fairness metric is chosen, SOGE
tends to produce an oversimplifiedmodel that classifies all instances
as positive or negative (an all-1 or all-0 classifier) to achieve absolute
fairness (i.e., AOD or SPD equal to zero). This finding underscores
the importance of jointly considering both accuracy and fairness
during the optimization process. Interestingly, we observed that the
models that achieved optimal fairness or accuracy varied across the
three datasets. This interplay highlights the limitations of single-
model HPO and underscores the necessity of addressing the CASH
problem.

Figure 2: Accuracy, AOD, and SPD for different test datasets
over 30 experiments for default models and SOGE setups.
Note that lower fairness metric values are more optimal,
while higher values of accuracy are more desirable.

5.2 Comparison of MOGE with Other Baselines
Compared to single-objective setups, MOGE can effectively con-
sider and balance both objectives simultaneously. Table 2, 3, and
Fig. 3 show the results of all setups. We find that the solution with
the highest accuracy in MOGE is similar to the results obtained
from SOGE focused on accuracy. When comparing MOGE to SOGE
focused on fairness, we observe that MOGE tends to select over-
simplified classifier with higher accuracy preferentially. However,
MOGE generates a spectrum of solutions spanning the Pareto fron-
tier between single-objective extremes, offering users a repository
of trade-offs to balance fairness and accuracy for their specific
context. Interestingly, we observed that all Pareto fronts included
at least three different algorithm types. This mix highlights why
multi-objective CASH matters: sticking to one model type risks
missing better performance, while letting models "compete" across
types naturally uncovers richer trade-offs.

Figure 3: Accuracy, SPD, and AOD for different setups in
different test datasets over 30 experiments. Note that lower
fairness metric values are more optimal, while higher values
of accuracy are more desirable.

While random search can also produce a set of solutions, its
results tend to be scattered throughout the search space and often
lie further from the ideal point (i.e., accuracy of 1 and fairness of
0). Consequently, random search achieves lower average perfor-
mance than MOGE, highlighting MOGE’s superior effectiveness.
Compared to Exponentiated Gradient Reduction, although it of-
fers a substantial fairness improvement over the default model, we
were pleasantly surprised to find that MOGE still identified multi-
ple solutions that are both more accurate and fairer. This outcome
highlight the competitive potential of the MOGE. We can select
the appropriate models from a wide range of options that balance
accuracy and fairness based on specific circumstances.

6 Conclusion and Future Work
In this paper, we implemented MOGE to investigate how the multi-
objective CASH affects model accuracy and fairness. By compar-
ing the results of SOGE and default models, we found that while
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Table 2: Mean and standard deviation of accuracy and AOD
for different setups across different test datasets over 30 ex-
periments. Note that lower fairness metric values are more
optimal, while higher values of accuracy are more desirable.

Dataset Setups Test
Accuracy

Test
AOD

Census Default 0.71 ± 0.23 0.11 ±0.06
Acc Only 0.85 ± 0.01 0.12 ± 0.02
AOD Only 0.61 ± 0.25 0.00 ± 0.00
MOGE 0.79 ± 0.04 0.02 ± 0.04
Random Search 0.75 ± 0.15 0.13 ± 0.10
Exponentiated 0.81 ± 0.01 0.01 ± 0.01

COMPAS Default 0.71 ± 0.09 0.12 ± 0.09
Acc Only 0.86 ± 0.00 0.08 ± 0.00
AOD Only 0.51 ± 0.04 0.00 ± 0.00
MOGE 0.77 ± 0.14 0.06 ± 0.03
Random Search 0.64 ± 0.11 0.12 ± 0.09
Exponentiated 0.67 ± 0.01 0.02 ± 0.01

Heart Default 0.75 ± 0.03 0.12 ± 0.03
Acc Only 0.77 ± 0.01 0.16 ± 0.01
AOD Only 0.50 ± 0.01 0.00 ± 0.00
MOGE 0.71 ± 0.09 0.06 ± 0.05
Random Search 0.67 ± 0.11 0.09 ± 0.06
Exponentiated 0.71 ± 0.01 0.02 ± 0.01

Table 3: Mean and standard deviation of accuracy and SPD
for different setups across different test datasets over 30 ex-
periments. Note that lower fairness metric values are more
optimal, while higher values of accuracy are more desirable.

Dataset Setups Test
Accuracy

Test
SPD

Census Default 0.71 ± 0.23 0.15 ± 0.08
Acc Only 0.85 ± 0.01 0.18 ± 0.01
AOD Only 0.60 ± 0.26 0.03 ± 0.08
MOGE 0.83 ± 0.03 0.08 ± 0.05
Random Search 0.75 ± 0.15 0.15 ± 0.11
Exponentiated 0.82 ± 0.01 0.02 ± 0.01

COMPAS Default 0.71 ± 0.09 0.17 ± 0.09
Acc Only 0.86 ± 0.00 0.18 ± 0.00
AOD Only 0.50 ± 0.01 0.00 ± 0.00
MOGE 0.75 ± 0.14 0.11 ± 0.07
Random Search 0.64 ± 0.11 0.14 ± 0.10
Exponentiated 0.66 ± 0.01 0.01 ± 0.01

Heart Default 0.75 ± 0.03 0.19 ± 0.04
Acc Only 0.77 ± 0.01 0.23 ± 0.01
AOD Only 0.50 ± 0.01 0.00 ± 0.00
MOGE 0.71 ± 0.08 0.10 ± 0.08
Random Search 0.67 ± 0.11 0.13 ± 0.08
Exponentiated 0.72 ± 0.01 0.01 ± 0.01

SOGE outperforms default models in achieving its specific objec-
tives (accuracy or fairness), it neglects the other. In contrast, MOGE
generates a set of Pareto-optimal solutions that balance both ac-
curacy and fairness, incorporating at least three different types of

models within the Pareto front. Furthermore, MOGE outperforms
random search and Exponentiated Gradient Reduction by produc-
ing solutions with higher accuracy and fairness, thereby proving
its superior effectiveness. Future work will expand to more datasets
and tasks, explore richer model configurations, and investigate
alternative search operators beyond NSGA-II to further enhance
fairness-accuracy trade-offs.
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