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hyperparameters using the Tree-structured Parzen Estimator (TPE)
on the MNIST classification task, exploring a search space of over 1 INTRODUCTION
3 billion potential combinations. TPE effectively navigates this vast
space, significantly outperforming random search in terms of mean,
median, and best accuracy. During the validation process, the best
hyperparameter configuration found by TPE achieves an accuracy
of 29.00% on MNIST, surpassing previous studies while using a
smaller population size and fewer generations. The transferability
of the optimized hyperparameters is explored in logic operations
and Fashion-MNIST tasks, revealing successful transfer to the more

Neuroevolution, a subfield of evolutionary computation, emerged
as a powerful approach for optimizing neural networks, with algo-
rithms like Neuroevolution of Augmenting Topologies (NEAT) [18]
and its extensions demonstrating promising results across various
domains. The performance of these algorithms heavily relies on the
selection of hyperparameters, which significantly impact the search
process and the resulting network architectures [12]. This paper in-
vestigates hyperparameter optimization for the Evolvable-Substrate

complex Fashion-MNIST problem but limited to simpler logic oper- HyperNEAT (ES-HyperNEAT) algorithm [13], an indirect encoding
ations. This study emphasizes a method to unlock the full potential extension of NEAT, using the Tree-structured Parzen Estimator
of neuroevolutionary algorithms and provides insights into the hy- (TPE) [2] on the MNIST classification task [8].

perparameters’ transferability across tasks of varying complexity. TPE efficiently explores the search space and identifies promis-

ing configurations by modeling the probability distribution of well-
CCS CONCEPTS performing hyperparameters. This study assesses TPE’s potential
for optimizing ES-HyperNEAT hyperparameters and investigates
the transferability of optimized configurations to tasks of varying
complexity, such as logic operations and Fashion-MNIST classifica-
tion [21].
The successful application of ES-HyperNEAT to various tasks,
such as logic operations [13], has been well-documented. However,

« Theory of computation — Evolutionary algorithms; - Com-
puting methodologies — Neural networks; Supervised learning
by classification; Heuristic function construction; Randomized search;
Transfer learning.

KEYWORDS the MNIST classification task remains a challenge for the algorithm
Neuroevolution, ES-HyperNEAT, Hyperparameter Optimization, in its pure form, with a study by Verbancsics and Harguess [19]
Tree-structured Parzen Estimator, MNIST, Fashion-MNIST, Logic achieving an accuracy of 23.90% using HyperNEAT with a prede-
Operations, Transfer Learning fined LeNet-5 topology [9].

This research has significant potential to impact the field of neu-
roevolution and its applications. By laying the foundations for more
efficient and adaptable neuroevolutionary algorithms, the insights
gained can guide the development of robust and generalizable neu-

roevolutionary systems, enabling their application to a broader
EY range of complex real-world problems. The remainder of this paper
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TPE optimization and the transferability of the best hyperparam-
eter configuration, Section 6 discusses the findings’ implications,
limitations, and potential future research directions, and finally,
Section 7 concludes the paper, summarizing the main contributions
and significance of the research.

2 BACKGROUND
2.1 Neuroevolution and ES-HyperNEAT

Neuroevolution is a subfield of evolutionary computation that ap-
plies evolutionary algorithms to optimize neural networks. The
Neuroevolution of Augmenting Topologies (NEAT) algorithm [18]
evolves both the weights and the structure of neural networks, start-
ing with a minimal network and incrementally adding nodes and
connections through mutation and crossover operations inspired
by natural evolution principles.

Hypercube-based NEAT (HyperNEAT) [17] extends NEAT by
evolving Compositional Pattern Producing Networks (CPPNs) [16],
which generate the connectivity patterns and weights of a fixed-
topology substrate network. HyperNEAT exploits the geometric
regularities of the problem domain to evolve large-scale neural
networks with complex connectivity patterns. Evolvable-Substrate
HyperNEAT (ES-HyperNEAT) [13] further extends HyperNEAT by
allowing the substrate network’s topology to evolve along with the
CPPN, enabling the discovery of more efficient and task-specific
network topologies.

2.2 Bayesian Optimization and TPE

Bayesian optimization [14] is a sequential model-based optimization
approach well-suited for expensive black-box functions, such as
those encountered in hyperparameter optimization. It constructs
a probabilistic model of the objective function to guide the search
towards promising regions of the search space.

The Tree-structured Parzen Estimator (TPE) [2] is a Bayesian
optimization algorithm that models the probability distribution of
hyperparameters that lead to good performance. TPE maintains two
density estimators: [(x) for the distribution of hyperparameters
that yield low objective values and g(x) for the distribution of
hyperparameters that yield high objective values.

At each iteration, TPE selects the next set of hyperparameters to
evaluate by maximizing the expected improvement (EI) acquisition
function:

1(x)

;
EI(x) = / 4" =0 p(ule) dy

where y* is the current best observed objective value, and p(y|x) is
the probability of observing an objective value y given the hyperpa-
rameters x. TPE efficiently explores the search space by iteratively
updating the density estimators and selecting hyperparameters that
maximize the expected improvement.

3 RELATED WORK

Neuroevolution has emerged as a powerful approach to optimizing
neural networks, with the NEAT algorithm [18] and its extensions
demonstrating promising results across various domains. A system-
atic literature review by Papavasileiou et al. [11] categorizes these
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developments based on their key contributions and application ar-
eas, highlighting the diverse range of enhancements made to NEAT,
such as the incorporation of indirect encoding schemes, the evo-
lution of modular and hierarchical structures, and the application
of neuroevolution to domains like deep learning, reinforcement
learning, and robotics.

The importance of hyperparameters in NEAT and its extensions
has been well-established. Stanley and Miikkulainen [18] provided
guidelines for setting these hyperparameters based on the prob-
lem domain. Risi and Stanley further investigated the impact of
hyperparameters on HyperNEAT’s performance [12]. In the orig-
inal HyperNEAT paper, Stanley et al. [17] solved the XOR logic
operation using hand-tuned hyperparameters. Later, Risi and Stan-
ley [13] showcased ES-HyperNEAT’s capabilities across various
tasks using hand-tuned hyperparameters. While these hand-tuned
hyperparameters yielded impressive results, their work highlighted
the potential for further improvement through systematic hyperpa-
rameter optimization.

In the field of hyperparameter optimization, Bayesian optimiza-
tion approaches have gained popularity due to their ability to ex-
plore high-dimensional search spaces efficiently. TPE [2] has shown
promising results in various machine learning tasks, demonstrat-
ing its effectiveness in handling high-dimensional hyperparameter
spaces [2, 15].

While these studies provide valuable insights into hyperparame-
ter optimization and TPE’s effectiveness, more research is needed,
focusing specifically on applying TPE to ES-HyperNEAT and ex-
ploring the transferability of optimized hyperparameters from a
specific source task to another target task with lower or similar
complexity. Our work aims to fill this gap by investigating the use
of TPE for optimizing ES-HyperNEAT’s hyperparameters, explor-
ing the transferability of the optimized hyperparameters from the
MNIST classification task, selected as the source task, to logic oper-
ations and Fashion-MNIST classification tasks, chosen as the target
tasks, and highlighting the potential for further advancements in
the field.

4 EXPERIMENTAL SETUP

Our study comprises two main experiments: hyperparameter in-
vestigation and transferability of hyperparameters. The hyperpa-
rameter investigation evaluates TPE’s [2] effectiveness in finding
performant ES-HyperNEAT [13] hyperparameter configurations
on the MNIST classification task [8], comparing its performance
to random search [3]. The transferability experiment examines the
generalizability of the best MNIST hyperparameter configuration
to logic operations and Fashion-MNIST classification tasks [21].
The experiments were implemented using Python and the Pure-
ples framework [6], which is based on NEAT-Python [10], and were
conducted exclusively on CPUs across 13 machines with varying
CPU performances and RAM sizes using the Optuna framework [1].

4.1 Hyperparameter Investigation

We selected sixteen hyperparameters from the ES-HyperNEAT
algorithm to create a search space of over 3 billion potential config-
urations (tab 1). For the hyperparameters not included in the search
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space, we used the configuration file from the XOR problem experi-
ment in the NEAT-Python library and left all other parameters at
the library’s default values. Although TPE has been demonstrated
on a 32-dimensional problem [2], we followed the rule of thumb
in Frazier’s tutorial on Bayesian Optimization [7], which suggests
keeping the number of dimensions below 20 for efficacy. Based
on a preliminary study, we determined the search space, number
of generations, and batch size. Both TPE and random search were
employed to explore this space. The TPE search was constrained to
78 days, with each hyperparameter configuration running for 20
generations.

Hyperparameter Range of Options
NEAT Parameters

num_hidden 0,1,2,3,4,5
pop_size 10, 20, 40, 60, 80, 100
conn_add_prob 0.3,0.5,0.7
conn_delete_prob 0.3,0.5,0.7
node_add_prob 0.2,0.4,0.6,0.8
node_delete_prob 0.2,0.4,0.6,0.8

full_nodirect, full_direct, unconnected, fs_neat_hidden,
fs_neat_nohidden

0.2,0.4,0.6,0.8

sigmoid, gauss, clamped, relu, tanh, softplus

initial_connection

connection_fraction
activation_default

Substrate Parameters

initial_depth 1,2

max_depth 3,4,5
variance_threshold 0.01, 0.02, 0.03, 0.04
division_threshold 0.3,0.5,0.7
max_weight 3.0, 5.0, 7.0
iteration_level 0,1,2,3

activation sigmoid, gauss, clamped, relu, tanh, softplus

Table 1: Hyperparameter search space for the Neuroevolution
of Augmenting Topologies (NEAT) algorithm and substrate
parameters.

For the MNIST experiment, the substrate was initialized at the
center of the input and output vectors. At each generation, a batch
of 200 random images from the MNIST dataset, evenly spread across
the classes, are selected for evaluation. The fitness of each genome
was evaluated by comparing the predicted class of the phenotype
network with the ground truth class for each input image in the
data batch. The predicted class was determined by the index of the
maximum value in the phenotype’s output vector, while the ground
truth class was determined by the index of the maximum value in
the ground truth vector. The genotype’s fitness score increased by
1 for each correct prediction, and the overall fitness was calculated
as the mean fitness across all evaluated images. The objective value
for TPE optimization was the best fitness achieved by the best-
performing individual in the final generation.

4.2 Transferability of Hyperparameters

The transferability experiment investigates the generalizability of
the best hyperparameter configuration found during the TPE search
on the MNIST task to logic operations (XOR, OR, AND, NOR, XNOR,
and NAND) and Fashion-MNIST classification tasks. The motiva-
tion is to assess the effectiveness of the optimized hyperparameters
in solving tasks with varying complexity and explore the poten-
tial for leveraging knowledge gained from one task to improve
performance on other tasks.
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For the logic operation tasks, which are solved problems, we
evaluate the performance of ES-HyperNEAT using the best hy-
perparameter configuration from the MNIST task and compare it
to a random search. The fitness for each genome is evaluated by
comparing the network’s output with the expected output for all
possible input combinations, using 1 - the residual sum of squares
(ESS) [18]. Based on a preliminary study on XOR, we fixed the
number of generations to 10 for each trial for each logic operation
task.

For the Fashion-MNIST classification task, which presents a sim-
ilar but more complex challenge compared to the MNIST task [21],
we first establish a baseline performance using random search and
then apply the best hyperparameter configuration from the MNIST
task to assess its transferability. The substrate initialization, fitness
evaluation, and selection of 200 random images per generation
follow the same approach as the MNIST task, with 20 generations
per trial.

We employ several performance metrics, including mean accu-
racy, median accuracy, best accuracy, worst accuracy, and standard
deviation, to assess the performance of TPE optimization compared
to random search and evaluate the transferability of the best hyper-
parameter configuration. We conduct two-sample t-tests, assuming
unequal variances [20], to determine the statistical significance of
the differences between TPE and random search, as well as the
transferred configuration and random search. Additionally, we cal-
culate Cohen’s d, a measure of effect size, to quantify the magnitude
of the differences between the methods [4].

5 EXPERIMENTAL RESULTS

This section presents the results of our study on hyperparame-
ter optimization for the ES-HyperNEAT algorithm using the Tree-
structured Parzen Estimator (TPE) and the transferability of the best
hyperparameter configuration across different tasks. We evaluate
the performance of TPE compared to random search on the MNIST
classification task, investigate the transferability of the best hyper-
parameter configuration to logic operations and Fashion-MNIST
classification tasks, and discuss the validation of our results.

5.1 Evaluating TPE on MNIST Classification

We compared the TPE and random search experiments to assess
TPE’s effectiveness for optimizing ES-HyperNEAT hyperparame-
ters on the MNIST classification task. The random search experi-
ment consists of at least 30 trials, a commonly used sample size for
the Central Limit Theorem [5]. However, to investigate whether
TPE exhibits learning or behaves similarly to random search, we
extended the number of random search trials to 292. The compar-
ison between RandomSearch-292 and RandomSearch-30 yields a
t-statistic of 0.11, a p-value of 0.910, and a Cohen’s d effect size of
0.02 (tab 3), indicating no significant difference between the per-
formance of random search with 30 and 292 trials. Based on these
results, we use RandomSearch-292 in our analysis while leaving
RandomSearch-30 in the tables. This approach allows a concise
presentation of the findings without compromising the validity
of the conclusions drawn from the comparative analysis between
random search and TPE optimization.
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Table 2 presents the descriptive statistics for RandomSearch-292,
TPE-Search with 2013 trials, and the best hyperparameter configu-
ration found by TPE (TPE-Best) on the MNIST classification task,
validated over 30 independent runs. The results demonstrate that
TPE-Search consistently outperforms RandomSearch-292 regard-
ing mean, median, and best accuracy values. TPE-Best achieves the
highest performance, reaching an accuracy of 28.0% during vali-
dation, surpassing the best accuracy of TPE-Search (27.5%) while
using a significantly smaller population size of 256 and 2500 gen-
erations compared to the HyperNEAT study by Verbancsics and
Harguess [19] which reached 23.90%. This result highlights the
potential for building more computationally efficient topologies by
identifying the optimal hyperparameters.

Method Mean (%) Median (%) SD (%) Best(%) Worst (%)
RandomSearch-30 11.47 10.00 2.90 20.50 10.00
RandomSearch-292 11.41 10.00 2.76 20.50 10.00
TPE-Search 17.41 19.00 4.26 27.50 10.00
TPE-Best 23.40 23.25 2.07 28.00 20.00

Table 2: Accuracy metrics for the MNIST classification task
using random search with 30 and 292 trials, TPE optimization
search, and the best hyperparameter configuration found by
TPE.

To quantify the significance of the observed differences, we con-
ducted two-sample t-tests, assuming unequal variances (tab 3). The
results reveal highly significant differences between TPE-Search
and RandomSearch-292, TPE-Best and TPE-Search, and TPE-Best
and RandomSearch-292, with large effect sizes. These findings em-
phasize the practical significance of the performance improvements
achieved by TPE optimization over random search and the superi-
ority of the best hyperparameter configuration found by TPE.

Comparison t-statistic ~ p-value  Cohen’s d
RandomSearch-292 vs. RandomSearch-30 0.11 0.912 0.02
TPE-Best vs. TPE-Search 15.88 <0.001 1.42
TPE-Best vs. RandomSearch-30 18.86 <0.001 4.87
TPE-Best vs. RandomSearch-292 29.91 <0.001 4.34
TPE-Search vs. RandomSearch-30 11.31 <0.001 1.41
TPE-Search vs. RandomSearch-292 31.47 <0.001 1.47

Table 3: Two-sample t-test results and effect sizes for compar-
isons between TPE optimization, random search, and the best
hyperparameter configuration found by TPE for the MNIST
classification task.

Figure 1 showcases the TPE optimization process for the MNIST
classification task, highlighting key points of interest and the sto-
chastic nature of the optimization process. Table 4 showcases the
hyperparameters that varied across the optimal configurations dis-
covered by TPE, which achieved a 27.5% accuracy on the MNIST
task. The table is divided into NEAT and substrate parameters, with
the following hyperparameters remaining constant across all opti-
mal configurations: num_hidden = 0, pop_size = 100, initial_depth =
2, conn_delete_prob = 0.5, node_add_prob = 0.2, division_threshold
= 0.5, and iteration_level = 0. The varying hyperparameters, such
as connection addition probability (CAP), node deletion probability

1882

Claret and O’Neill, et al.

(NDP), initial connection type (IC), connection fraction (CF), default
activation function (AD), maximum depth (MD), variance threshold
(VT), maximum weight (MW), and activation function (Act), play a
crucial role in determining the network’s effectiveness.

ES-HyperNEAT Hyperparameters Optimization Using TPE on 16 Dimensions for 20 Generations per Trial

v
trial 816 with a
fitness of 27.5%

Objective Values
New Maximums

0.275

Trend Line

trial 292 with a
fitness of 24.5% |

0.250
0.225
0.200
0.175

0.150

Best fitness value of the latest generation

TPE trend, R*=0.010

0.125

0.100

1000
Trial Number

1250 1500 1750 2000

Figure 1: Scatter plot of the TPE optimization process for the
MNIST classification task, showcasing each trial’s objective
values (best fitness of the latest generation).

NEAT Parameters Substrate Parameters
CAP NDP IC CF AD MD vT MW Act
0.5 0.8 FN 0.8 softplus 5 0.01 3 clamped
0.5 0.2 FD 0.4 clamped 4 0.03 7 softplus
0.5 0.2 FD 0.4 tanh 3 0.03 7 clamped
0.7 0.2 FD 0.8 softplus 5 0.03 3 softplus

Table 4: Optimal ES-HyperNEAT hyperparameter configu-
rations discovered by TPE on the MNIST classification task,
achieving the best accuracy of 27.5%.

In summary, our evaluation demonstrates the significant superi-
ority of TPE optimization over random search for hyperparameter
tuning in the ES-HyperNEAT algorithm on the MNIST classification
task. The substantial improvements in accuracy, the highly signifi-
cant statistical differences, and the large effect sizes underscore the
effectiveness of TPE in finding performant hyperparameter configu-
rations. These findings contribute to the growing body of evidence
supporting the use of hyperparameter optimization techniques in
neuroevolutionary algorithms, preparing the way for more effective
and efficient neural network design and application.

5.2 Transferability Results

This subsection presents the results of investigating the generaliz-
ability of the best hyperparameter configuration found using TPE
search on the MNIST task to logic operations and Fashion-MNIST
classification tasks.

5.2.1 Logic Operations Tasks. We performed a random search (Ran-
domSearch) over 30 trials and compared the results with the per-
formance of using the logic operation on the best hyperparameter
configuration from the MNIST TPE search (MNIST-Config) over 30
trials. We did not extend to 292 trials for the MNIST and Fashion-
MNIST experiments because we reached 100% accuracy within the
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30 trials scope. The fitness for each genome is evaluated by calcu-
lating the accuracy, over all possible input combinations, of the
network’s output compared to the expected output [18].

Table 5 provides an overview of the performance metrics, com-
paring the random search (RandomSearch) and the transferred
hyperparameter configuration from MNIST TPE Search (MNIST-
Config). It presents each logic operation’s mean, median, standard
deviation, and best and worst accuracy values.

Method Mean (%) Median (%) SD (%) Best(%) Worst (%)
XOR

RandomSearch 75.19 75.27 19.28 100.00 50.00
MNIST-Config 83.33 83.25 1.38 87.47 79.13
OR

RandomSearch 76.80 98.73 30.70 100.00 25.00
MNIST-Config 100.00 100.00 0.00 100.00 -
AND

RandomSearch 88.77 87.50 10.71 100.00 75.00
MNIST-Config 87.91 87.50 1.11 91.15 87.41
NOR

RandomSearch 85.91 77.22 12.03 100.00 75.00
MNIST-Config 86.65 81.17 8.56 100.00 76.01
XNOR

RandomSearch 73.78 73.98 20.35 100.00 50.00
MNIST-Config 76.43 75.00 3.07 87.53 73.96
NAND

RandomSearch 66 80.18 31.77 100.00 25.00
MNIST-Config 87.68 86.49 6.78 100.00 81.14

Table 5: Accuracy metrics for logic operations tasks, com-
paring random search (RandomSearch) and the outcome of
running the logic operation on the best hyperparameter con-
figuration from the MNIST TPE search (MNIST-Config).

The results show that the transferred hyperparameters from
MNIST TPE Search (MNIST-Config) outperform RandomSearch
for all logic operations, with the most substantial improvements
observed for OR, NAND, and XOR. MNIST-Config achieves perfect
accuracy (100%) for the OR operation, while RandomSearch has
a mean accuracy of 76.80%. For NAND, MNIST-Config attains a
mean accuracy of 87.68%, compared to 66% for RandomSearch. In
the case of XOR, MNIST-Config reaches a mean accuracy of 83.33%,
surpassing RandomSearch’s 75.19%.

To quantify the significance of the differences between the meth-
ods, we conducted two-sample t-tests assuming unequal variances.
Table 6 presents the t-statistics, p-values, and effect sizes (Cohen’s
d) for comparing MNIST-Config and RandomSearch for each logic
operation.

The results show that the transferred hyperparameters from
MNIST TPE Search (MNIST-Config) significantly outperform Ran-
domSearch for the XOR (t = 2.31, p = 0.025, d = 0.60), OR (t = 4.14,
p < 0.001, d = 1.07), and NAND (t = 3.66, p = 0.001, d = 0.94) op-
erations, with moderate to large effect sizes. For the AND, NOR,
and XNOR operations, the differences between MNIST-Config and
RandomSearch are not statistically significant (p > 0.05), with small
effect sizes (d < 0.2).

These findings suggest that the best hyperparameter configura-
tion from the MNIST task can be effectively transferred to specific
logic operations tasks, particularly XOR, OR, and NAND, leading to

1883

GECCO 24 Companion, July 14-18, 2024, Melbourne, VIC, Australia

MNIST-Config vs. RandomSearch t-statistic ~ p-value  Cohen’sd
XOR 2.31 0.025 0.60
OR 4.14 <0.001 1.07
AND —0.43 0.663 -0.11
NOR 0.27 0.785 0.07
XNOR 0.71 0.483 0.18
NAND 3.66 0.001 0.94

Table 6: Two-sample t-test results and effect sizes for compar-
isons between the outcome of using the best hyperparameter
configuration from the MNIST TPE search (MNIST-Config)
and random search (RandomSearch) for each logic operation.

significant performance improvements over random search. How-
ever, the transferability may be limited for other logic operations,
such as AND, NOR, and XNOR, where the performance differences
are not statistically significant.

5.2.2  Fashion-MNIST Classification Task. We conducted a random
search over 30 trials (RandomSearch-30) and compared the results
with the performance of using the best hyperparameter configu-
ration from the MNIST TPE search (MNIST-Config) over 30 trials.
Table 7 presents the accuracy metrics for the Fashion-MNIST task
using RandomSearch-30, RandomSearch-292, and MNIST-Config.

Method Mean (%) Median (%) SD (%) Best(%) Worst (%)
RandomSearch-30 11.93 10.00 3.74 23.00 10.00
RandomSearch-292 11.60 10.00 3.08 23.50 10.00
MNIST-Config 20.00 20.00 1.00 22.50 18.50

Table 7: Accuracy metrics for the Fashion-MNIST classifica-
tion task, comparing random searches (RandomSearch-30
and RandomSearch-292) and the use of the best hyperpa-
rameter configuration from the MNIST TPE search (MNIST-
Config).

MNIST-Config achieves a mean accuracy of 20.00%, outperform-
ing RandomSearch-30 (11.93%) and RandomSearch-292 (11.60%).
However, MNIST-Config attains the lowest best accuracy (22.50%)
compared to RandomSearch-30 (23.00%) and RandomSearch-292
(23.50%), suggesting that while the transferred hyperparameters
improve overall performance, they may not be optimal for achiev-
ing the highest accuracy on the Fashion-MNIST task due to the
complexity and differences between the datasets.

Two-sample t-tests assuming unequal variances (tab 8) reveal
no significant difference between RandomSearch-30 and Random-
Search-292 (t = 0.47, p = 0.641, d = 0.10), indicating that increasing
the number of trials from 30 to 292 does not substantially improve
random search performance for the Fashion-MNIST task. However,
MNIST-Config significantly outperforms both RandomSearch-30 (t
=11.42, p < 0.001, d = 2.95) and RandomSearch-292 (t = 32.75, p <
0.001, d = 2.85) with large effect sizes, demonstrating that the best
MNIST hyperparameter configuration can be effectively transferred
to the Fashion-MNIST classification task, leading to substantial
performance improvements over random search.

In summary, our evaluation of the cross-task transferability of op-
timized hyperparameters demonstrates that the best MNIST hyper-
parameter configuration found using TPE search can be effectively
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Comparison t-statistic ~ p-value  Cohen’sd
RandomSearch-292 vs. RandomSearch-30 0.47 0.641 0.10
MNIST-Config vs. RandomSearch-30 11.42 < 0.001 2.95
MNIST-Config vs. RandomSearch-292 32.75 < 0.001 2.85

Table 8: Two-sample t-test results and effect sizes for the
comparisons between applying the best hyperparameter con-
figuration from the MNIST TPE search (MNIST-Config) and
random searches (RandomSearch-30 and RandomSearch-292)
for the Fashion-MNIST classification task.

transferred to the Fashion-MNIST classification task, leading to
significant performance improvements over random search. These
findings underscore the potential benefits of leveraging knowl-
edge from one task to improve performance on related tasks, even
when the source task (MNIST) is less complex than the target task
(Fashion-MNIST). However, further investigation is needed to lever-
age knowledge from the source task (MNIST), which is more com-
plex than the target tasks (logic operations). The transferability of
optimized hyperparameters can save computational resources and
time by reducing the need for extensive hyperparameter tuning
on each new task. However, the effectiveness of transfer learning
may depend on the specific characteristics of the target task and
the similarity between the source and target domains.

5.3 Validation Experiments and Bug Mitigation

During our experiments, we discovered a bug in our parallel execu-
tion code that occasionally caused hyperparameter configurations
to be swapped across generations between concurrently running
trials. Upon identifying this issue, we promptly halted the experi-
ments, rectified the code, and conducted validation experiments to
assess the bug’s impact on our findings.

We first examined the validation results for the logic operations
and MNIST classification experiments using random search, con-
firming that the bug did not significantly affect these results. How-
ever, due to the substantial computational resources required for
the initial TPE experiment, we opted to perform a validation analy-
sis of the TPE results instead of rerunning the entire experiment.
This 15-day validation process involved evaluating 885 hyperpa-
rameter configurations obtained from the TPE search experiment,
with each configuration being run for at least three trials to ensure
robustness.

The sequential list of hyperparameter configurations for valida-
tion was constructed using a rigorous methodology. We ranked the
2013 configurations from the TPE search based on their objective
values, selecting the top 50 configurations and their neighboring
configurations within a window of 2. We then randomly sampled 50
additional configurations from the remaining pool, including their
neighboring configurations and excluding any preselected configu-
rations. Finally, we incorporated the configurations of 200 randomly
selected trials with the lowest objective values, applying the same
window and exclusion criteria. This process yielded 271 unique
configurations, of which 199 were successfully validated within the
allocated timeframe. Concurrently, we allocated additional com-
putational resources to assess the top-performing configurations
further, evaluating 8 of the best hyperparameter configurations for
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30 trials each, with some experiments prematurely terminated due
to resource constraints.

The validation process revealed that 72 out of the 199 assessed
configurations surpassed the best result obtained by the corrected
random search (22.00%), providing persuasive evidence for TPE
optimization’s superiority over random search in the MNIST classi-
fication experiment using ES-HyperNEAT, even with the hyperpa-
rameter swapping bug present.

Table 9 presents the mean, median, standard deviation, best, and
worst accuracy values for the MNIST, Logic Operations, Fashion-
MNIST classification tasks for the corrected random search over
30 trials (RS-Corr-30), the corrected random search of 292 trials
(RS-Corr-292), the validation of 199 hyperparameter configurations
from the MNIST TPE search (TPE-Validation) and the best hyperpa-
rameter configurations found during the validation of the MNIST
TPE search (TPE-Val-Best) applied to the different tasks.

Method Mean (%) Median (%) SD (%) Best(%) Worst (%)
MNIST

RS-Corr-30 11.13 10.00 2.62 19.50 10.00
RS-Corr-292 11.18 10.00 2.62 22.00 10.00
TPE-Validation 16.68 18.50 5.01 29.00 10.00
TPE-Val-Best 20.95 20.75 2.41 29.00 17.00
OR

RS-Corr-30 60.11 55.21 35.73 100.00 25.00
TPE-Val-Best 99.92 100.00 0.33 100.00 98.26
AND

RS-Corr-30 79.21 75.00 8.11 100.00 75.00
TPE-Val-Best 86.54 87.05 1.12 87.50 83.87
XOR

RS-Corr-30 58.43 50.00 14.18 100.00 50.00
TPE-Val-Best 78.34 77.61 3.33 83.29 75.00
NAND

RS-Corr-30 56.35 75.00 30.40 100.00 20.00
TPE-Val-Best 86.99 85.20 6.08 99.47 80.59
NOR

RS-Corr-30 77.13 75.00 6.50 100.00 75.00
TPE-Val-Best 84.82 81.25 8.62 100.00 75.00
XNOR

RS-Corr-30 57.67 50.00 13.19 100.00 50.00
TPE-Val-Best 74.32 74.75 1.97 80.33 69.35
Fashion-MNIST

TPE-Val-Best 20.77 20.25 1.34 24.00 19.00

Table 9: Accuracy metrics for MNIST, logic operations tasks
(OR, AND, XOR, NAND, NOR, XNOR), and Fashion-MNIST,
using correct random search (RS-Corr-30 and RS-Corr-292),
Validation of TPE Search on MNIST (TPE-Validation), and
the best configurations found during the validation of the
MNIST TPE search (TPE-Val-Best) applied to the different
tasks.

Statistical analysis using two-sample t-tests (tab 10) showed no
significant differences between the original and corrected random
searches for the MNIST task, suggesting the bug’s minimal impact
on the random search results and providing a reliable baseline for
comparison with TPE optimization. In contrast, TPE-Val-Best signif-
icantly outperformed RS-Corr-292 for the MNIST task (t = 20.93, p
< 0.001, d = 3.72), providing strong evidence for TPE optimization’s
superiority over random search.
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Comparison t-statistic ~ p-value  Cohen’sd
MNIST

RandomSearch-30 vs. RS-Corr-30 0.48 0.632 0.12
RandomSearch-292 vs. RS-Corr-292 1.01 0.311 0.08
TPE-Search vs. RS-Corr-30 12.76 < 0.001 1.49
TPE-Search vs. RS-Corr-292 34.34 < 0.001 1.53
TPE-Val-Best vs. RS-Corr-30 15.77 < 0.001 4.07
TPE-Val-Best vs. RS-Corr-292 20.93 < 0.001 3.72
TPE-Val-Best vs. TPE-Search 7.86 < 0.001 0.84
OR

RandomSearch-30 vs. RS-Corr-30 1.94 0.057 0.50
TPE-Val-Best vs. RS-Corr-30 6.10 < 0.001 1.58
AND

RandomSearch-30 vs. RS-Corr-30 3.89 < 0.001 1.00
TPE-Val-Best vs. RS-Corr-30 4.90 < 0.001 1.27
XOR

RandomSearch-30 vs. RS-Corr-30 3.83 < 0.001 0.99
TPE-Val-Best vs. RS-Corr-30 7.49 < 0.001 1.93
NOR

RandomSearch-30 vs. RS-Corr-30 3.52 0.001 0.91
TPE-Val-Best vs. RS-Corr-30 3.91 < 0.001 1.01
NAND

RandomSearch-30 vs. RS-Corr-30 1.20 0.234 0.31
TPE-Val-Best vs. RS-Corr-30 5.41 < 0.001 1.40
XNOR

RandomSearch-30 vs. RS-Corr-30 3.64 0.001 0.94
TPE-Val-Best vs. RS-Corr-30 6.84 < 0.001 1.76
Fashion-MNIST

TPE-Val-Best vs. RandomSearch-30 12.19 < 0.001 3.15
TPE-Val-Best vs. RandomSearch-292 30.13 < 0.001 3.09

Table 10: Two-sample t-test results and effect sizes for key
comparisons in the validation experiments and bug mitiga-
tion process.

The consistency of the results across multiple comparisons and
the substantial effect sizes demonstrate the robustness of TPE op-
timization’s superiority and the effectiveness of the best hyperpa-
rameter configurations, emphasizing the importance of thorough
experimental validation and careful design, execution, and moni-
toring of experiments in research.

6 DISCUSSION

6.1 Hyperparameter Optimization

This study demonstrates the effectiveness of TPE for optimizing
ES-HyperNEAT hyperparameters on the MNIST classification task,
consistently outperforming random search. The logic operations
experiments suggest that these tasks are relatively easy for ES-
HyperNEAT, and extensive hyperparameter optimization may not
be necessary. The transferability of hyperparameters from MNIST
to logic operations tasks shows promise, with the best MNIST con-
figurations consistently outperforming corrected random searches.
The Fashion-MNIST classification task provides preliminary evi-
dence of the best MNIST hyperparameter configuration’s transfer-
ability to a similar task. However, the extent of these improvements
may be limited due to inherent differences between the datasets,
such as Fashion-MNIST’s increased complexity and diversity, po-
tential overspecialization of the MNIST configuration, and the need
for task-specific input encoding and output decoding strategies.
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6.2 Implications of Transferability Results

The transferability experiments provide valuable insights into the
generalizability of optimized hyperparameters across different tasks.
The success of transferring the best MNIST configuration to certain
logic operations tasks (XOR, OR, and NAND) may be due to the
relative simplicity of these problems, as they can be solved using
random search with just 30 trials. The limited transferability ob-
served to other logic operations (AND, NOR, and XNOR) further
supports this interpretation, suggesting that the success of transfer
learning in these cases may depend on the specific characteris-
tics of the target task and the luck of the draw in terms of the
hyperparameter configuration.

The transferability results for the Fashion-MNIST classification
task offer more substantial evidence supporting the potential ad-
vantages of transfer learning in neuroevolution. During the TPE
validation process, the best hyperparameter configurations discov-
ered for the MNIST task, referred to as TPE-Val-Best in Table 9,
achieved a mean accuracy of 20.77% when applied to the Fashion-
MNIST dataset. This performance surpasses that of RandomSearch-
30 (11.93%), as shown in Table 7. These findings suggest that trans-
ferring optimized hyperparameters from a source task to a related
target task sharing similar characteristics could enhance perfor-
mance compared to conducting a random search, potentially cir-
cumventing the need for extensive computational resources.

These findings highlight the importance of considering the rela-
tionship between the source and target tasks when applying trans-
fer learning techniques in neuroevolution. While transferring opti-
mized hyperparameters may provide performance benefits when
the tasks are closely related, the effectiveness of this approach may
be limited when the problem domains differ substantially or when
the target task is relatively simple.

6.3 Robustness of Results

The bug’s discovery in our parallel execution code underscores the
importance of diligent validation and bug resolution in experimen-
tal research. The validation results revealed that the bug signifi-
cantly affected the random search performance for the AND, XOR,
NOR, and XNOR tasks, leading to an overestimation of the baseline
performance with p < 0.001 (tab 10). However, the bug did not
significantly impact the random search results for the MNIST, OR,
NAND, and Fashion-MNIST tasks, as the Fashion-MNIST random
search was performed after the bug was fixed, providing reliable
baselines for comparison with TPE optimization.

The rigorous validation process, which evaluated 885 hyperpa-
rameter configurations from the TPE search experiment, ensured
the robustness of the results. The finding that 72 assessed configu-
rations surpassed the best result obtained by the corrected random
search (22.00%) demonstrates the superiority of TPE optimization
over random search, even in the bug’s presence.

The statistical analysis confirmed the significance of the observed
differences, with highly significant results and large effect sizes be-
tween the best validated MNIST configuration (TPE-Val-Best) and
the corrected random search (RS-Corr-30 and RS-Corr-292). These
findings highlight the importance of thorough experimental valida-
tion and careful design, execution, and monitoring of experiments.
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The bug mitigation process and subsequent validation experi-
ments demonstrate the resilience of our findings and the robustness
of the TPE optimization approach for the MNIST, OR, NAND, and
Fashion-MNIST tasks. However, they also emphasize the need for
caution when interpreting results for the AND, XOR, NOR, and
XNOR tasks, as the bug significantly affected the random search
performance, leading to an overestimation of the baseline perfor-
mance. Despite this, the ability of random search to find optimal
solutions within 30 trials suggests that these tasks may be relatively
simple for ES-HyperNEAT, and the consistent outperformance of
the transferred best MNIST configuration (TPE-Val-Best) highlights
the potential benefits of using optimized hyperparameters from a
more complex task, even for simpler problems.

6.4 Limitations and Future Work

Our study provides valuable insights into hyperparameter opti-
mization for ES-HyperNEAT and the transferability of optimized
hyperparameters. However, it also reveals several limitations that
present opportunities for future research, particularly in exploring
alternative optimization algorithms and expanding the search space
to enhance the efficiency and effectiveness of neuroevolutionary
algorithms.

One of our primary objectives for future work is to investigate op-
timization algorithms, mainly based on evolutionary computation,
such as CMA-ES, which could potentially improve the hyperparam-
eter optimization process for ES-HyperNEAT. By comparing the
performance of these algorithms with TPE, we aim to identify the
most suitable approach for efficiently optimizing neuroevolutionary
algorithms.

Furthermore, we plan to expand the hyperparameter search
space by increasing the granularity of the hyperparameters, mod-
ifying the substrate geometric initialization, and exploring addi-
tional hidden layers and higher population sizes. This expansion
will enable us to identify the most influential hyperparameters
through sensitivity analysis and potentially overcome limitations
in achievable fitness on complex tasks like MNIST classification.

Another crucial aspect of our future research is to delve deeper
into the transferability of optimized hyperparameters across tasks
with varying complexity. By conducting extensive experiments
on a broader range of tasks from domains such as games and the
discovery of statistical models, we aim to develop a strong under-
standing of how transferability works in practice. This knowledge
will serve as a foundation for bootstrapping new tasks efficiently
and effectively, ultimately contributing to developing more adapt-
able and high-performing neural networks. To achieve these goals,
we will also focus on developing methods for identifying the most
relevant source tasks for a given target domain and adapting trans-
ferred hyperparameters to the specific requirements of the target
task. Exploring advanced transfer learning approaches, such as
meta-learning or multi-task learning, may further improve the gen-
eralizability of evolved networks across a wide range of tasks and
domains.

7 CONCLUSION

This study represents a significant step forward in the field of neu-
roevolution, demonstrating the effectiveness of the Tree-structured
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Parzen Estimator (TPE) for optimizing the hyperparameters of the
Evolvable-Substrate HyperNEAT (ES-HyperNEAT) algorithm on
the MNIST classification task. The findings highlight the superiority
of TPE over random search in identifying performant hyperparam-
eter configurations, with the best configuration discovered by TPE
achieving a noteworthy accuracy of 29.00% on MNIST (tab 9) us-
ing a significantly smaller population size and fewer generations
compared to previous studies.

The cross-task transferability experiments provide valuable in-
sights into the generalizability of optimized hyperparameters. The
results suggest that the best MNIST configuration can be effectively
transferred to the Fashion-MNIST classification task, a more com-
plex problem sharing similar characteristics with MNIST, leading to
significant improvements over random search. However, the trans-
ferability to simpler tasks, such as certain logic operations, is less
conclusive. These findings highlight that the effectiveness of trans-
ferring optimized hyperparameters may depend on the complexity
and similarity of the problem domains.

This research introduces novel perspectives on hyperparameter
optimization and transferability in neuroevolution, underscoring
the importance of rigorous experimental validation. The extensive
validation process, which evaluated a wide range of hyperparameter
configurations obtained from the TPE search experiment, demon-
strates the resilience of the findings and the robustness of the TPE
optimization approach. The consistency of the results across multi-
ple comparisons and the substantial effect sizes emphasize the reli-
ability and reproducibility of the research outcomes, highlighting
the significance of meticulous experimental practices in ensuring
the integrity of scientific findings.

The findings have meaningful implications for the practical ap-
plication of neuroevolutionary algorithms, laying the groundwork
for developing more efficient and adaptable neural networks. By
addressing the limitations and opportunities identified in this study,
future research can focus on exploring alternative optimization
algorithms, expanding the search space, and delving deeper into
the transferability of optimized hyperparameters across tasks with
varying complexity.

In conclusion, this study contributes significantly to neuroevolu-
tion, demonstrating the potential of hyperparameter optimization
techniques like TPE to enhance the performance of algorithms such
as ES-HyperNEAT and highlighting the importance of rigorous ex-
perimental practices and validation. The insights gained from this
research lead the way for unlocking the full potential of neuroevo-
lutionary algorithms, ultimately contributing to advancing the field
and realizing more efficient, adaptable, and high-performing neural
networks.
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