s
)
@;_Sffr Proceedings of the International Multiconference on ISSN 1896-7094
Computer Science and Information Technology pp. 437-446 © 2007 PIPS

Genetic Programming for Dynamic
Environments

Zheng Yin', Anthony Brabazon!, Conall O’Sullivan?, Michael O’Neill!

! Natural Computing Research and Applications Group
University College Dublin, Ireland.
zheng.yinQucdconnect.ie Anthony.Brabazon@ucd.ie M.0ONeill@ucd.ie
2 School of Business, University College Dublin, Ireland.
conall.osullivanQucd.ie

Abstract. Genetic Programming (GP) is an automated computational
programming methodology which is inspired by the workings of natural
evolution techniques. It has been applied to solve complex problems in
multiple application domains. This paper investigates the application of
a dynamic form of GP in which the probability of crossover and muta-
tion adapts during the GP run. This allows GP to adapt its diversity-
generating process during a run in response to feedback from the fitness
function. A proof of concept study is then undertaken on the important
real-world problem of options pricing. The results indicate that the dy-
namic form of GP yields better results than are obtained from canonical
GP with fixed crossover and mutation rates. The developed method has
potential for implementation across a range of dynamic problem envi-
ronments.

1 Introduction

One of the most studied evolutionary methodologies is that of genetic program-
ming (GP) [3]. GP is a population-based search algorithm. It starts from a
high-level statement of what is required and automatically creates a computer
programme to solve the problem. GP belongs to the field of Fvolutionary Auto-
matic Programming. The term is used to refer to systems that adopt evolutionary
computation to automatically generate computer programmes. More generally,
a computer programme can be considered as a list of rules or as a model.
Many of the most interesting real-world problems arise in a dynamic envi-
ronment, one where the underlying fitness landscape and the associated optimal
solution, changes over time. The challenge in tackling dynamic problems using
evolutionary approaches include the making of good parameter choices for the
evolutionary algorithm, as well as maintaining sufficient diversity in the popu-
lation of solutions during the run. In the context of GP, many algorithm design
choices are open to the modeller including the form and rate of mutation; the
form and rate of crossover; the form and pressure of selection mechanism; the
form of replacement mechanism; and the size of population. Choices for these
items can impact critically on the algorithm’s performance. Good settings for

437

438 Zheng Yin, Anthony Brabazon, Conall O’Sullivan, Michael O’Neill

one problem will not be appropriate for another. Indeed, good settings will not
be static during a single GP run. This paper investigates a component of this
problem, through application of a dynamic form of GP in which the probability
of crossover and mutation adapts during the GP run. This permits GP to adapt
its diversity-generating process during a run in response to feedback from the
fitness function.

Recent years have seen the application of multiple biologically-inspired algo-
rithms for the purposes of financial modelling [1]. In this study, we test the utility
of the new GP system by applying it to the important real-world problem of op-
tions pricing. Due to the complexity in developing closed form theoretical models
for options pricing, the domain is particularly amenable to techniques such as
GP. One of the early applications of GP to the option pricing problem is provided
by [6]. Since then there have been many methodological improvements such as
seeding the initial population with elements drawn from the Black-Scholes op-
tion pricing formula, and the combination of other domain knowledge into the
GP set of terminals / non-terminals [7].

2 Dynamic Genetic Programming

As already discussed in sect. 1, there are multiple decision choices open to the
modeller when applying GP. Even when attention is restricted to the choice
of good crossover and mutation rates, a non-trivial problem results, as these
parameters will typically interact.

The parameter choices for crossover and mutation are clearly critical in en-
suring a successful GP application. They impact on populational diversity and
the ability of GP to escape from local optima. The parameter settings are also
linked to the complexity of the problem and the size of the population. If the
search space is large and/or the population size is relatively small, then the
mutation rate will typically need to increase.

A common approach in tuning a GP is to undertake a series of trial and
error experiments before making parameter choices for the final GP runs. How-
ever, this approach is highly problematic as it can be time consuming and it
is impractical to test all parameter choices. Another issue is that good choices
for parameters such as crossover and mutation rates are unlikely to remain con-
stant over the entire run. Rather than selecting static parameter values, another
approach is to dynamically adapt the parameters during the run. Three broad
methods of such adaptation exist (see Fig. 1) [2]. Deterministic methods of pa-
rameter control vary parameter settings during the GP run, without using any
feedback from the search process. Under a feedback adaptive process, the pa-
rameter values are adapted based on feedback from the algorithm. For example,
if the intent was to increase the level of diversity generation once the popula-
tion has converged to a threshold level (perhaps measured using the entropy
of the population structures), once such convergence is detected, the mutation
rate could be increased by x%. Another possibility is to evolve good choices for

Genetic Programming for Dynamic Environments 439

Dynamic Parameter
Control
I

| 1 1
[Deterministic] [FeedbackAdaptive] [Evolvethe]

Parameters

Fig. 1. Taxonomy of adaptive parameter control

its parameters dynamically during the run, which is called self adaptation. Our
adaptive GP belongs to the second type.

There are comprehensive discussions about Evolutionary Algorithms’ param-
eter adaptation in [19] and [18]. Most discussions of operator adaptation for evo-
lutionary algorithms are found in the Genetic Algorithm literature. Studies in [9]
and [26] provide the earlier discussions of this topic. [9] adapted the probability
of operator according to a method favoring operators produced fitter children.
In [26], the mutation probability is changed by a deterministic method. Relevant
GA literature includes adaptation of parameters based on fitness feedback, such
as [15], [14] and[11]. [10] based the feedback on population diversity. This appli-
cation achieved the twin goals of population diversity and convergence capacity
by adapting the probability of crossover and mutation. [16], [13] and [12] used
self adaptive to evolve the parameters.

In the recent applications, the operator adaptation in GA has been more
refined and complicated. They have not only combined more sophisticated pop-
ulation statistics into the feedback control variables,but also combined with other
optimization methods. [21] explicitly adapted the mutation rate for each gene
locus by the information of gene-based allele distribution. [22] further included
the gene-based fitness into the control information. [20] explicitly adapted the
operator probability according to mutation and crossover matrices which include
fitness ranking, loci standard deviation of allele distribution and hamming dis-
tance of chromosome. [24] inferences of probability of crossover and mutation
by a fuzzy-based system, which fuzzifies the relative sizes of the clusters con-
taining the best and worst chromosomes. The above applications all get positive
results based on their tested problems. However, there are also some studies try
to compare the adaptive methods across different difficulty problems.[23] get the
conclusion that in a variety of circumstances self-adaptation fails to allow the
GA to perform better on some test suite than fixed mutation. At an earlier stage,
it was concluded in [17] that successful adaptation has to combine the charac-
ters of real world problems,to detect and overcome the pitfall from them. Since
different real world problems have different difficulties to be solved they need dif-
ferent adaptation method. In this application we leave the proposed adaptation
method in the market option pricing equivalent difficulty environment.

It is important to note that findings in the GA literature will not necessarily
carry over to GP. For example, in the GA, crossover and mutation operate on an
underlying genotype, normally a fixed length string, whereas in GP they operate

440 Zheng Yin, Anthony Brabazon, Conall O’Sullivan, Michael O’Neill

directly on the phenotype, a popular type is syntax tree. Tree diversity measure
is much harder to define and time consuming to calculate. Hence, although the
concepts of crossover, mutation and selection in GA and GP are similar, their
application produces different effects. There has also been a different history
in the use of crossover and mutation between GA and GP. Typically, although
the mutation rate in GA is small, mutation is considered to play a vital role in
diversity generation. In contrast, early applications of GP emphasised the use of
sub-tree crossover, rather than sub-tree mutation. However, in spite of the above,
the GA literature on dynamic adaptation of parameter settings does provide a
good foundation for thinking about these issues in GP. [25] proposed a metric to
reflect tree structure difference and used fitness sharing to dynamically control
GP’s population diversity however the probability of operator kept fixed. The
study of [27]adapted the probabilities of operator in a graph represented GP
based on three methods related to operator successful rates, parents’ fitness and
operator successful history at individual level. Our adaptive method is based on
feedback from the fitness function. This is supplemented by considering how long
it has been since a new best solution was last uncovered. We term this period the
generation gap. Compared with other adaptations this method does not involve
extra calculation and memory cost though it returned improved results.

3 Applying GP for Options Pricing

In applications of GP to options pricing, the objective is to uncover an underlying
option pricing model, using market data. The utility of the model is tested by
comparing the quality of its predictions against real market option prices.

In this study, data is drawn from market option prices on the FTSE 100
futures index on the 17th March 2006. There are 187 different end-of-day set-
tlement implied volatilities quoted for various strike prices and maturities. The
option moneyness (defined as the the underlying asset price divided by the strike
price) in our 187 data points varies from 0.77 to 1.43, the time-to-maturity varies
from 35 days to 5754 days and the option price varies from 1.5E-12 to 4295. Mar-
ket call option prices are calculated by substituting the implied volatilities into
the Black-Scholes formula. The remaining factors such as the underlying asset
price, the strike price and time-to-maturity are observed. The object of the GP
application is to predict the 187 option prices given the explanatory variables.
Among these 187 data points, 165 shorter dated options are used for in sample
fitting and the remaining 22 longer dated options, which have time to maturity
ranging 3199 to 5754 days and moneyness levels ranging from from 0.77 to 1.43
are used as the out of sample test. Thus information on shorter dated options
is used to predict longer dated options using market option data. In selecting
variables for inclusion as terminals, we used domain knowledge [7] to include
option moneyness and implied volatility during the life of the option (table 1).
The implied volatilities oarean, Orraz and oarin in table 1 are calculated using
the shorter dated options with maturities ranging from 35 days to 553 days.
We choose options with time to maturity from 35 days to 553 days as they are

Genetic Programming for Dynamic Environments 441

shorter term options, which are most actively traded in the market. The non-
terminal set is as listed in table 2. The predictive target is the entire range of
option prices and in particular the out-of-sample longer dated option prices.

Table 1. Terminal set

Variables || Ezxpression || Definition
X1 So Asset price
X2 So/K Asset price / Strike price
X3 T Time to maturity
X4 T Risk free rate
X5 OMean Mean implied volatility from option with T' from 35 to 553 days
X6 OMax Maximum implied volatility from option with T' from 35 to 553 days
X7 OMin Minimum implied volatility from option with T' from 35 to 553 days
X8 onean * VT Implied asset price volatility during option’s life by oarean
X9 OMaz * VT Implied asset price volatility during option’s life by oarax
X10 omin * VT Implied asset price volatility during option’s life by oarin

Table 2. Non-terminal set

Ezxpression Sign || Definiton

+ Addition
- Subtraction

Multiplication

x/y Protected division, if y=0 then x/y= x; else x/y=x/y
log(z) Protected natural logarithm, if x=0 then log(z)=0; else log(z)=log(Vx?)
VT Protected square root, if z < 0 then \/z=0; else /z=y/T
N(z) Accumulated normal distribution
e® Exponential function

4 Experimental design

In previous applications of GP to options pricing, the probabilities of crossover
and mutation were typically kept constant. For example, in [6] mutation is ap-
plied at a probability of 0.0033 and population of 500,with a mutation probability
of 0.001 and population of 2000 being applied by [5] and a mutation probability
of 0.001 and a population size of 50 being applied by [8]. [4] investigated the
utility of various mutation rates between 0.1 to 0.5 (each of which was constant
in a single run) with a population from 100 to 50,000.

As already noted, in this study we employ ten explanatory variables, see
table 1. There are also eight functions in the non-terminal set. From the Black-
Scholes formula we know the tree level should be around 11. This implies that we
are searching for a global solution (the model) in a space of round 18!, clearly
a challenging task. Based on initial experiments, it was found (as expected)

442 Zheng Yin, Anthony Brabazon, Conall O’Sullivan, Michael O’Neill

(a) Constant Probability

Fig. 2. The Generation Gaps Between Neighbor Best Individuals

that the best individual changes frequently in early generations, with the rate
of change slowing down later in the run. Generation gaps between new best
individuals are plotted in figure 2(a). The points above the line in the graph
indicate the generation gap between subsequent best individuals are more than
six generations. Based on these results we adapted the operator probabilities
according to this generation gap.

In the dynamic GP the mutation probability is increased at a constant rate
whenever the best individual is unchanged over several generations and the mu-
tation probability is changed to the normal rate when a new best individual
is uncovered. This allows the search process to adapt to escape local optima,
whilst permitting local improvement around just discovered new solutions. In
this study, the width of the window is set at six generations. We are assuming
six generations are plenty for GP to exploit the just explored area. In other
words, mutation is fixed for the six generations following the uncovering of a
new best solution. After six generations without finding a new best individual,
the mutation probability increased until either it reaches 0.9 or alternatively, a
new best solution is uncovered. Figures 3(a) and 3(b) illustrate the adaption of
crossover and mutation rates during a sample GP run.

A total of twenty GP runs were undertaken, ten of which were fixed parameter
GP runs and ten of which were dynamic parameter GP runs. The fixed param-
eters for crossover and mutation were 0.4 and 0.6 respectively, set after some
initial trial and error experiments. In the adaptive experiments, the parameters
for crossover and mutation are initially set to 0.4 and 0.6. If six generations have
elapsed and the best individual has not changed this means the population is
perhaps too concentrated and new area need to be explored hence the mutation
rate is increased by 0.02 per generation, with crossover decreasing by 0.02 each
time until limits of 0.9 and 0.1 are reached. Once a new best individual appears
the mutation and crossover probabilities are restored to their initial values of 0.6
and 0.4.

Genetic Programming for Dynamic Environments 443

For all the above experimental runs, ramped half-half initialization is em-
ployed. A roulette parental selection strategy, with a replacement strategy of
half elitism (which means half of the new population will be filled by the best
from both parent and children and the remaining places will be left to the best
children), is also employed. The population size is fixed at 300. The GP run
is terminated either when there has been no performance improvement for 40
generations, or when a maximum number of generations is hit (800 generations).

Genetic operators

1

LLLARDOI0NT

]" — Last prob.crossover: 0.1

— Last prob.mutation: 0.9
Cum.Freq.Crossover: 51195
Cum Freq Mutation: 117396

[HJH H

operator probabilty / frequency
o
@
T

| 1

, . | |
100 200 300 400 500 600 700 800
generation

(a) Dynamic Probability

Genetic operators

0.65

— Last Prob.Crossover: 0.4

— Last Prob.Mutation: 0.6
Cum.Freq.Crossover: 44930
Cum.Freq.Mutation: 65792

operator probability / frequency

045

. ,
100 200 300 400 500 600
generation

(b) Constant Probability

Fig. 3. Probability of Crossover and Mutation in a GP Run

444 Zheng Yin, Anthony Brabazon, Conall O’Sullivan, Michael O’Neill

5 Results

The results from the twenty GP runs are provided in tables 3 and 4. The in
sample average absolute error from the constant parameter GP is 12.7% higher
than the dynamic parameter GP counterpart, and the average percentage error
is about 4.5% higher. The out sample average absolute error from the constant
parameter GP is 231.4% higher than the dynamic parameter GP counterpart,
and the average percentage error is 240.5% higher.

It can be seen from graphs 3(b) and 3(a), the ratio of the cumulated muta-
tion frequency and crossover frequency in constant GP, where it is near 6:4, is
much lower than it in dynamic GP, where it is near 7:3. The extra mutations
in the second case are distributed in different searching periods. By this way
GP effectively escape the local optima and explore more searching space, hence
improve the performance.

Table 3. The results from the constant probability setting with mutation 0.6 and
crossover 0.4. A.E., the absolute error calculated as the absolute value of the difference
between option price returned by GP and the market option price P.E., the percentage
error calculated as dividing the absolute error(A.E.) by the market price

Test Index 1 2 3 4 5. 6 7 8 9 10 ||Average of 1-10
In sample

AE. 548 788 821 99.2 99.8 99.9 100 109 116 116 95.56
P.E. (%) 29.3 31.5 32.9 37.1 38.2 41.4 13.6 42.1 37.2 46 34.9
Out sample

A.E. 151 915 333 317000 257 37300 476 8110 5890 574 37100.6
PE. (%) 48 29.3 104 9070 7.9 1000 13.6 223 159 19 1053.7

Table 4. The results from the adaptive GP, if there is no improvement in 6 generations
the mutation probability will increase by 0.02 each time until a max of 0.9 and drop
back to 0.6 when a new best individual appears. A.E., P.E. as in the above table

TestIndex 1 2 3 4 5 6 7 8 9 10 |Averageof 1-10

In sample
A.E. 42.7 64.9 71.2 71.3 72.2 89.8 101 102 116 117 84.81
P.E. (%) 26.7 31.5 31.2 29.9 26.9 32.8 34.7 45.1 35.2 40.1 33.41

Out sample
A.E. 465 143 1570 51400 432 505 1060 1000 5780 49600 11195.5
P.E. (%) 13.6 4.5 46.2 1440 14.4 17.4 31.6 28.6 158 1340 309.4

6 Conclusions

This paper illustrates the application of a novel dynamic form of GP, where
the probability of crossover and mutation is adapted during the GP run, to the

Genetic Programming for Dynamic Environments 445

important real-world problem of options pricing. The tests are carried out using
market option price data and the results illustrate that the new method yields
better results than are obtained from GP with fixed crossover and mutation
rates.

It is noted that this dynamic GP method improves the performance without
extra calculation costs. This method has potential for implementation across
a wide range of dynamic problem environments and it is intended to test the
utility of the methodology on a variety of non-financial dynamic problems. In
future application, window size could be determined dynamically during the GP
run. Future work also includes correcting the biases in the Black-Scholes options
pricing model by applying GP to recover market option prices across a range
of possible explanatory variables and thereby examining the interrelationships
among option prices that goes beyond the Black-Scholes pricing formula.

References

1. Brabazon A.,O’Neill M. (2006). Biologically Inspired Algorithms for Financial
Modelling, Springer, Berlin. 311-327.

2. Eiben A.E.,Smith J.E. (2003). Introduction to evolutionary computing, Springer,
Berlin.

3. Koza, J.R. (1992). Genetic programming—on the programming of computers by
means of natural selection, MIT Press.

4. Chidambaran N. K. (2003). Genetic Programming with Monte Carlo Simula-
tion for Option Pricing, Proceedings of the 2008 Winter Simulation Conference,
Vol.1, pp. 285-292

5. Noe T. H., Wang J. (2002). The Self-Evolving Logic Of Financial Claim Prices in
Genetic algorithms and genetic programming in computational finance, Kluwer
Academic Publishers, pp. 249-279.

6. Chen S. H., Yeh C. H. and Lee W. C. (1998). Option Pricing with Genetic
Programming, in proceedings of the Third Annual Genetic Programming Con-
ference, Morgan Kaufmann Publishers, San Francisco, CA, pp. 32-37.

7. Yin Z., Brabazon A. and O’Sulivan C. (2006). Genetic Programming and Op-
tion Pricing, in proceedings of the 2006 Annual Irish Accounting & Financial
Association Conference.

8. Keber C. (2002). Evolutionary Computation in Option Pricing: Determining
Implied Volatilities Based on American Put Options, in Evolutionary Compu-
tation In Economics and Finance, Physica-Verlag Heidelberg, pp. 399-415.

9. Davis L. (1989). Adapting Operator Probabilities in Genetic Algorithms, in pro-
ceedings of the Third International Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, pp. 61-69.

10. Srinivas M., Patnaik L. M. (1994). Adaptive Probabilities of Crossover and
Mutation in Genetic Algorithms, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 24, No. 4, April 1994, pp. 656-667.

11. Ho C. W, Lee K. H. and Leung K. S. (1999). A Genetic Algorithm Based on
Mutation and Crossover with Adaptive Probabilities. In Proceedings of the 1999
Congress on Fvolutionary Computation, 1999. CEC 99., Vol. 1, pp. 768-775.

12. Boomsma W. (2004). A Comparison of Adaptive Operator Scheduling Methods
on the Traveling Salesman Problem, Evolutionary Computation in Combinato-
rial Optimization, Springer Berlin, pp. 31-40.

446

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Zheng Yin, Anthony Brabazon, Conall O’Sullivan, Michael O’Neill

Zhang J., Chung H. S. H., Hu B. J. (2004). Adaptive Probabilities of Crossover
and Mutation in Genetic Algorithms Based on Clustering Technique in Pro-
ceedings of the Congress on Evolutionary Computation, 2004. CEC2004., 19-23
June 2004, Vol. 2, pp. 2280-2287.

Julstrom B. A. (1997). Adaptive Operator Probabilities in A Genetic Algorithm
that Applied Three Operators. Proceddings of the 1997 ACM Symposium on
Applied Computing, ACM Press, pp. 233-238.

Julstrom B. A. (1995). What have you done for me lately? Adapting operator
probabilities in a steady-state genetic algorithm, in proceedings of the Sizth
International Conference on Genetic Algorithms, San Francisco, CA, Morgan
Kaufmann, pp. 81-87.

Spears W. M. (1995). Adaptive Crossover in Evolutionary Algorithms, in Pro-
ceedings of the 4th Annual Conference on FEvolutionary Programming, Cam-
bridge, MA, MIT Press, pp. 367-384.

Tuson A., Ross P. (1998). Adapting Operator Settings in Genetic Algorithms.
in Evolutionary Computation (1998), Vol. 6, pp. 161-184.

Eiben A. E., Hinterding P., Michalewicz Z. (1999). Parameter Control in Evolu-
tionary Algorithms in IEEE Transaction on Evolutionary Computation, Vol. 3,
No. 2, July 1999, pp. 124-141.

Angeline P. J. (1995) Adaptive and self-adaptive evolutionary computation in
Computational Intelligence: A Dynamic System Perspective, New York: IEEE
Press, 1995, pp. 152-161.

Law N. L., Szeto K. Y. (2007) Adaptive genetic algorithm with mutation and
crossover matrices in Twentieth International Joint Conference on Artificial
Intelligence, Hyderabad, India, Jan. 2007, pp. 2330—-2333.

Yang S. X. (2003) Adaptive mutation using statistics mechanism for ge-
netic algorithms in Research and Development in Intelligent Systems, London:
Springer-Verlag, 2003, pp. 19-32

Yang S. X. and Uyar S. Adaptive Mutation with Fitness and Allele Distribution
correlation for Genetic Algorithms in Proceedings of the 21st ACM Symposium
on Applied Computing, ACM Press 2003, pp. 940-944.

Rand W. and Riolo R. (2005) The problem with a Self-Adaptative mutation
rate in some environments: A Case Study Using the Shaky Ladder Hyperplane-
Defined Functions in Proceedings of the 2005 Conference on Genetic and Evo-
lutionary Computation, New York: ACM Press, 2005, pp. 1493—-1500.

Zhang J., Chung H. S. and Zhong J. (2005) Adaptative Crossover and mutation
in Genetic Algorithms Based on Clustering Technique in Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, New York: ACM Press,
2005, pp. 1577-1578.

Ekart A. and Nemeth S. Z. (2002) Maintaining the Diversity of Genetic Pro-
grams in Proceedings of the 5th Furopean Conference on Genetic Program-
ming, Lecture Notes In Computer Science, vol. 2278. Springer-Verlag, London,
pp. 162-171.

Fogarty T. (1989) Varying the probability of mutation in the genetic algorithm
in Proc. 3rd Int. Conf. Genetic Algorithms, Morgan Kaufmann Publishers, San
Francisco, CA, 1989, pp. 104-109.

Niehaus J. and Banzhaf W. (2001) Adaption of Operator Probabilities in Ge-
netic Programming in Proceedings of the 4th European Conference on Genetic
Programming, Lecture Notes In Computer Science, vol. 2038. Springer-Verlag,
London, pp. 325-336.

