
Optimising Team Sport Training Plans With
Grammatical Evolution

Mark Connor
University College Dublin

Ireland
mark.connor@ucdconnect.ie

&
STATSports Group Limited

Newry, N. Ireland

David Fagan
Dublin, Ireland

fagan.david@gmail.com

Michael O’Neill
University College Dublin

Ireland
m.oneill@ucd.ie

Abstract—We present a novel approach to generating seasonal
training plans for elite athletes using the grammatical evolution
approach to genetic programming. A grammatical encoding of a
team sport training plan dictates the plan structure. The quality
of the training plan is calculated using the widely adopted fitness-
fatigue model, which in this study incorporates four performance
metrics, namely distance covered at low to medium speed, distance
covered at high speed, distance covered accelerating, and distance
covered decelerating. We compare performance of the evolved
training plans to a control setup which generates plans using a
pseudo-random search process, and baseline against the training
plan adopted by an elite team of Gaelic Football Players.
Significant potential performance gains are achieved over the
control setup and baseline elite team plan.

Index Terms—sports analytics, genetic programming, gram-
matical evolution

I. INTRODUCTION

Planning seasonal training for athletes has traditionally
been guided by periodisation theory research which is fun-
damentally an extension of the study of stress, specifically
stress arisen from an imposed physical training stimulus and
the potential fitness adaptations which may develop through
adequate recovery [1]. In the 1970s the first physiological
based mathematical model was developed with the aim of
predicting an athletes performance occurring from adaptation
to a training stimulus, utilising measures which estimate the
subsequent stress brought about as a result of that stimulus,
typically referred to as a ’training load’ [2]. This fitness-
fatigue model developed by Banister et al. is still the most
widely used in professional sport today, all be it in several
different modified versions. In principle the model asserts that
the response to a training stimulus is a combination of a
negative (fatigue) and a positive (fitness) adaptation from the
accumulated training stress an athlete is exposed to during
a single session. Optimal performance is considered to be
a balance between the two mechanisms of the model [3].
Performance in any training session will be governed by the
adaptions from the previous one, if the resulting fatigue was
greater than the body’s ability to adapt then performance will
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be negatively affected until a time point at which fatigue
has dissipated and a positive adaptation can been achieved.
Therefore careful and considered design of an athlete’s training
plan is extremely important as to minimize the potential
detrimental effects of accumulated fatigue such as excessive
muscle tissue damage, changes in hormonal dysregulation and
autonomic nervous system imbalance [4]. This is particularly
relevant in the case of team sport athletes due to varying
levels of stress induced by the quantity, intensity and variety
of training activities they are exposed to, plus the regularity
of competitive games. Therefore the use of the fitness-fatigue
model is common place in guiding the preparation of seasonal
training plans in elite team sports today.

The original fitness-fatigue model was designed to be
utilised with only a single global measure of training load
in arbitrary units [2]. In the present day, advancements in
athlete tracking technology has allowed sports scientists and
coaches to extensively quantify a wide variety of training
stressors. Wearable devices equipped with global positioning
system (GPS) chips and inertial sensors are routinely worn
by professional team sport athletes during training and com-
petitive match’s to track a large quantity of external training
load metrics [5]. The over or under accumulation of these
metrics are used routinely to infer to what extent an athlete
has been subjected to a specific internal stress. To date a strong
body of research has shown that the accumulation of distance
covered at high rates of velocity and changes in velocity has a
significant relationship with important physiological markers
of athlete well-being including muscular tissue strain [6],
changes in blood bio-markers of muscle damage [7] [8] and
reductions in neuromuscular performance [9].

1) Purpose of the Paper: Therefore the importance of
ensuring that players receive significant doses of training stress
to develop a strong output capacity during matches, while
reducing the occurrences of a negative over exposure, is an
ongoing priority for medical and coaching staff. Thus the
purpose of this paper is: (i) to present a flexible framework
which can be used to generate optimised training plans for
professional teams and athletes adhering to real world and
model-based constraints. And (ii) compare generated training
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plans against a human implemented plan to quantify its
suitability and feasibility.

2) Statement of Novelty: The novel contribution to this
approach is three fold, firstly this is the first paper to explore
the use of grammatical evolution to generate optimised team
sport training plans, and by extension map the real world
training structure of an elite sports team into the optimisation
algorithm. Secondly the novel use of a fitness function which
captures a physiological based model of performance, for mul-
tiple measures of training stress, is introduced. The approach
allows for the simultaneous optimization of these measures
by considering the relationship between them. Given these
measures infer the stress placed on the bodies subsystems, this
allows for the compartmentalization of training stress within
a session, as opposed to the use of a single global measure
which may not fully capture the extent to which an individual
subsystem has been exposed. This approach also allows mul-
tiple different parameters of the fitness-fatigue model to be
applied to the different measures of training stress, and thus
more precisely represent the associated subsystems response
to a training stress. Thirdly this is the first approach to apply
the concept of training load thresholds to constrain generated
plans for the purpose of producing feasible and appropriate
load prescriptions with respect to the training session type.
These thresholds can be applied to any training session through
out the length of the plan which helps reinforce the use of
a periodisation strategy, specifically the practice of tapering
training loads pre-competition.

II. RELATED WORK

There has previously been several different algorithms pur-
posed to solve the problem of generating optimized training
plans to increase performance based on training models fo-
cused around individual sports, and more recently team sports.
The following section will give a broad over view of that work
as to familiarise the reader with what is a relatively new area
of research.

A. Fitness-Fatigue Model

The initial approach taken to model the relationship between
training and performance was based on the assertion that a
single training session carries both a positive and negative
physiological response, typically refereed to as ”fitness” and
”fatigue”, and that combining these two responses gives a mea-
sure of performance [10]. This is represented mathematically
in the following way:

pt = p0 +K1

t−1∑

i=1

wie−
n−i
r1 +K2

t−1∑

i=1

wie−
n−i
r2

With K1 and K2 being a positive weighting factor for fitness
and fatigue, these values can be fit per individual and represent
the rate at which they can recover from a training stress, r1 and
r2 represent the time decay until fitness and fatigue return to
baseline, and finally wi being the measured training work load
for a single session. One particular limitation of the original

model was that its parameters had to be fit to a particular
athlete. Because of the requirement to individualise the model
to a single athlete, a simplified version of the model know
as the Training Stress Balance (TSB), was widely adopted in
team sports because of its relatively simple implementation,
generalizability and supporting research [11]. The TSB model
considers performance as the ratio between two exponentially
weighting moving average scores, representing the fitness and
fatigue components (See section titled Fitness Function for
a detailed breakdown). Both models of performance do have
some flaws and overlook some important training concepts,
namely in the Banister model some parameters need to be
adapted to the athlete and also the performance metric being
used. Both the Banister and TSB model ignore the concept
of over training, assuming that a training stimulus will always
produce a increase in fitness, which is not always the case.
The training stress of a session is also only represented in both
models as a single global value, which dose not capture the
varying levels of stress and rates of recovery on the bodies
subsystems. Acknowledging these limitations, both models
have shown in practice to be effective at guiding the planning
of team sport training prescriptions [12] [13].

B. Mathematical Optimisation

Recognizing the rise in fitness based smartphone applica-
tions and adoption of wearable tracking devices, the authors
of this publication [14] developed a mathematically based
optimisation method to plan appropriate doses of training load
with the goal of peaking a runners performance over a 100
day period. The following interpretation of the fitness-fatigue
model was used to describe the relationship between training
load and performance:

p(t) = p∗ + w(t) ∗ g(t)

Where p(t) is the potential performance response to the
training load at time (t), p∗ describes the initial state of the
athlete, w(t) is the measured training load and g(t) describes
the response to that training load, which can be further broken
down in to the relationship between the time decay factors of
fitness and fatigue. A dynamical programming algorithm was
used to solve the formulated optimisation problem, where by
the decision at each successive stage is set to select the optimal
amount of training load that enhances fitness while minimising
fatigue. The results of simulation studies showed that training
plans which utilised the fitness-fatigue model out preformed a
training plan in which the loads where constant.

A multi-objective optimization model has also recently been
explored to generate training plans which reduce the risk of
injury as opposed to enhancing performance in Australian
rules football (AFL) [15]. This approach used a sequential
quadratic programming algorithm to generate daily training
load values which (A) maximise the total amount of distance
run over the specified training period (125 days), and (B)
maximise the forecast performance on match days using a
fitness-fatigue model. Several constraints where also applied
to the optimization of the training plans in order to increase
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the feasibility of the plans, these primarily focused on limiting
the short term accumulation of running distance to amounts
that were achievable by humans and reduced the risk of over
training. The algorithm was able to generate training plans
that satisfied both objectives (A) and (B) between 400-600
iterations, the training load values produced were comparable
to those of previously reported by AFL teams, however no
direct comparison was completed to access the effectiveness
of the algorithm generated plans.

C. Swarm Intelligence

The use of swarm intelligence algorithms has also been
purposed to generate optimised athlete training plans due to
the simple implementation and minimal time complexity for a
variety of problems. Previously a modified version of the bat
algorithm (MBA) has been used to search for a training plan
constructed as an integer vector that minimises the error rate
(er) between an intensity factor K and a training load for a
generated training plan [16]. This was formally defined as:

er = min|K − hr|

where K was set as the desired maximal heart rate and
hr in this instance was the heart rate generated by a spe-
cific training plan. Experimental results showed that with in
50,000 evaluations the bat algorithm was capable of generating
training plans with an er = 0, how ever this was only the
case when the intensity factor was set between an interval
K ∈ [135, 147]. Using the same mapping process from search
space to candidate solution the results of the bat algorithm was
compared against particle swarm optimisation (PSO), differ-
ential evolution (DE) and deterministic algorithms (DET). The
comparison showed that results from the PSO, DE and MBA
all significantly outperformed the DET, with the PSO and DE
also outperforming the MBA by a non-significant margin.

Building on the aforementioned work, recently a framework
for planning training sessions in the multidisciplinary sport of
triathlon using a PSO was purposed [17]. Similar to the bat
algorithm a modification was made to the PSO so that problem
solutions could be generated as real valued vectors. A single
training load metric was generalized across all disciplines
(swimming, running, cycling) with a weighting applied to
indicate priority of training. The PSO algorithm was capable
of maximizing the training load for the defined number of
training days devoted to each discipline using the following
fitness function:

f(xi) = max
∑

k∈D
wk · TRIMPk(xi)

Where wk for k is the importance weighting of the discipline
and TRIMPk(xi) is the training load metric for that sporting
discipline. The results of which were evaluated by a profes-
sional triathlon coach to determine the potential to enhance
performance, further experiments will need to be conducted
before the effectiveness of the PSO derived plans can be
determined.

D. Evolutionary Algorithms

The use of evolutionary algorithms to generate optimal
training plans has been explored by Schaefer et al. [18] inves-
tigating the potential of several different training load models
to enhance fitness and performance. The optimisation problem
was constructed as finding a training plans which results in
achieving a specified performance goal, four constraints were
set to three of which relate to the training structure of training
periods i.e on/off days, and a maximum achievable training
load per day was also set. The fitness function was formalised
to reward solutions which limit the difference between a
performance goal and the models predicted performance given
its generated training loads:

f(p, g) = 1− |g − fm(p, pm)| − α ·
n∑

i=1

(pi)

with p ∈ Ω, g the intended performance goal, fm representing
the performance model used and pm its parameters. A weight-
ing factor α is also used to ensure plans with higher training
loads with good precision don’t get rated poorly compared
to low loads with bad precision. Three different evolutionary
approaches were taken, firstly a Hill Climbing approach was
used with a population size of one, three variants of mutation
operators were implemented over the evolved plan to randomly
increase the training load for a given day, while supporting
the constraint boundaries. The second approach was to em-
ploy a Differential Evolution algorithm which created a new
solution from the differences between four members’ of the
population in a given generation. The third approach utilised
a Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), candidate solutions were sampled from a multivariate
normal distribution, and the search path was directed by the
sum of consecutive update steps. Comparative results over
10 generations showed that the DE and CMA-ES algorithms
were capable of solving the optimisation problem in this
instance significantly faster than two constraint satisfaction
problem (CSP) solvers (Bonmin, Couenne) with similar levels
of quality while adhering to all formalised constraints. The Hill
Climbing algorithm’s performance suffered from a tendency to
converge on a local optimum, and thus was out preformed by
all other algorithms used in the experiment.

III. EXPERIMENTAL FRAMEWORK

The purposed framework to evolve optimised training plans
for team sports based on performance models and defined
constraints, consists of three main parts, an evolutionary
algorithm, a formalised grammar and a fitness function, which
are detailed further in this section.

In this study we focus on generating training plans for an
elite team in the field sport of Gaelic Football. Data for the
team has been captured during a competitive season using
STATSports Apex units [19] for each of the four training load
measures, namely, distance covered at low to medium speed,
distance covered at high speed, distance covered accelerating,
and distance covered decelerating. This collected data covers
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both an inter-county football league and All-Ireland champi-
onship competition spanning eight months from the end of
January to the start of June.

A. Grammatical Evolution

Grammatical Evolution is an evolutionary algorithm that
takes a novel approach to Genetic Programming (GP) by
utilising a formalised grammar when executing the genotype to
phenotype mapping process [20]. PonyGE2 is a highly flexible
open source Python implementation of grammatical evolution
which is capable of encoding information by mapping linear
genomes to phenotype outputs, through the use of a context
free grammar notated in Backus-Naur form (BNF). The exten-
sive modular nature of PonyGE2 allows for a variety of search
strategies to be experimented with and progressive changes in
behaviour to be achieved by implementing trivial changes in
the supporting grammar. For a detailed over view of PonyGE2,
see [21].

B. Grammar Design

In order to evolve a valid structure for an athletes training
plan a BNF grammar was initially defined and is outlined in
Figure 1. The grammar was designed to replicate the training
plan structure of an elite inter-county Gaelic Football team,
spanning over twenty two weeks of competition. Gaelic Foot-
ball is a field based team sport native to Ireland, it is contested
between two teams of 15 players and is characterised by its
fast pace and skill [22]. When notating the training habits
of an elite team into the formalised grammar each training
session which took place was represented a series of non-
terminals, which further mapped to a set of four non-terminals
representing measures of external training load captured by a
wearable GPS unit. These four training load measures detailed
the distances in metres an athlete could potentially run when
their speed was: < 5.5 m s−1, ≥ 5.5 m s−1, acceleration
was ≥ 3.0 m s−2 and deceleration was ≥ 3.0 m s−2. Each
training session had a type associated with it based on how
far it was away from a match day (i.e. MD-2, two days
preceding a competitive match), based on the training day
type, load measures where constrained between an upper or
lower bound. This ensured that training plans were evolved
containing feasible training load values and that tapering prior
to games could be achieved. The ten match day load values
were calculated using the actual elite team match day data
from the median of all combined players who were on the
pitch for longer than 50 minutes and encoded into the grammar
for specific match day types, preserving the authenticity of the
retrospective training plan.

C. Fitness Function

As was the case with previous work, an implementation
of Banisters’ fitness-fatigue model know as Training Stress
Balance was used to assess the fitness of a given population
of solutions. The model’s fitness and fatigue components
were represented as exponentially weighted moving averages
calculated per session (54 sessions in total), for each of the

four training load measures, values for the fatigue component
are divided by the fitness component to give a ratio value:

f =
54∑

sess=1

4∑

met=1

∣∣∣∣
fatique

fitness
− 1.3

∣∣∣∣ (1)

Where f is the sum of the summation of residual values, after
the ideal ratio 1.3 has been taken from the absolute ratio
of each training stress balance score representing the total
training load of that session, calculated as follows:

fatigue = Loadts ∗ λfat + ((1− λfat) ∗ fatiguets) (2)

fitness = Loadts ∗ λfit + ((1− λfit) ∗ fitnessts) (3)

Where fatigue and fitness are the values for a single
training session, fatiguets and fitnessts are the calculated
loads for the previous training session, lambda is a value
between 0 and 1 specifying the degree of decay for both fitness
and fatigue. In this experiment lambda values were specified
as follows based on previous research [23]:

λfat = 2/(7 + 1)

λfit = 2/(28 + 1)
(4)

A fixed ratio value between the fitness and fatigue of the
training load measure was set at 1.3, for all four training
measures in a session, to enable progressive increases in
performance with acceptable levels of fatigue [23]. This is the
first study to explore the use of a fitness function that seeks
to compartmentalise training load to represent adaption across
different subsystems of the body. No other previous work [18]
[17] has consider this approach, which could also be extended,
to account for the varying rates of adaptation by changing the
lambda parameters of a training measure’s TSB calculation, to
more accurately model specific rates of fitness accumulation
and fatigue decay. For example based on previous research
highlighting that mechanical loads experienced during deceler-
ation’s can be up to 65 % greater than that of other match play
activities [24], the lambda parameters of the fitness function
could be easily adapted to account for increased fatigue and
slower rates of adaptation due to the enhanced muscular tissue
trauma.

D. Experimental Parameters

The specific parameters used in this experiment with the
PonyGE2 algorithm described in section III.A were: Popula-
tion size = 1000, Generations = 500, Runs Completed = 30,
Selection = Tournament, Tournament Size = 2, Replacement
= Generational, Elite Size = 10%, Crossover = Fixed One
Point, Crossover Probability = 90%, Mutation = Int Flip Per
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<inseason> ::= <md-5>;<md-2>;<md1>;
<md-5>;<md-2>;<md2>;
<md+2>;<gen>;<gen>;<md-5>;<md-2>;<md3>;
<md+2>;<gen>;<gen>;<md-5>;<md-2>;<md4>;
<md+2>;<gen>;<md-5>;<md-2>;<md5>;
<md+2>;<gen>;<gen>;<md-4>;<md6>;
<gen>;<gen>;<gen>;<gen>;<gen>;<gen>;<gen>;
<gen>;<gen>;<gen>;<gen>;<gen>;<gen>;
<md-5>;<md-2>;<md7>;
<gen>;<md-4>;<md-1>;<md8>;
<md+2>;<md9>;
<md+2>;<gen>;<gen>;<md-2>;<md10>

<md1> ::= 6331,1197,391,64
<md2> ::= 7895,543,261,97
<md3>::= 8876,629,362,123
<md4>::= 8665,613,336,120
<md5>::= 9157,1007,426,149
<md6>::= 10541,672,350,136
<md7>::= 8775,783,306,125
<md8>::= 9836,1169,356,140
<md9>::= 8642,706,432,147
<md10> ::= 9858,938,471,139
<md+2> ::= <td_u>,<hsr_u>,<acc_u>,<dec_u>
<md-6> ::= <td_u>,<hsr_u>,<acc_u>,<dec_u>
<md-5> ::= <td_u>,<hsr_u>,<acc_u>,<dec_u>
<md-4> ::= <td_u>,<hsr_u>,<acc_u>,<dec_u>
<md-2> ::= <td_l>,<hsr_l>,<acc_l>,<dec_l>
<md-1> ::= <td_l>,<hsr_l>,<acc_l>,<dec_l>
<gen> ::= <td_u>,<hsr_u>,<acc_u>,<dec_u>
<td_l> ::= GE_RANGE:3500
<hsr_l> ::= GE_RANGE:500
<acc_l> ::= GE_RANGE:200
<dec_l> ::= GE_RANGE:200
<td_u> ::= GE_RANGE:10000
<hsr_u> ::= GE_RANGE:1500
<acc_u> ::= GE_RANGE:500
<dec_u> ::= GE_RANGE:500

Fig. 1. The grammar adopted to encode an in-season training plan. The number and ordering of training and match days is as adopted by the elite Gaelic
Football team. The ten match day load metrics, across the four dimensions of load, are encoded in the non-terminals <md1>..<md10> and are generated
from the elite teams actual load data on each match day. The <gen> non-terminal encodes general training sessions which occur outside the seven-day
pre-match window with <md- and <md+ encoding pre- and post-match day training sessions. The four _l> and four _u> non-terminals are used to set lower
and upper bounds for each of the four load metrics in each session.

Ind, Mutation Events = 1. A pseudo-random search control
experiment was also conducted as a performance baseline, the
parameters were matched for both experiments aside from the
following adjustments: Population size = 10000, Generations
= 1, Runs Completed = 1.

IV. EXPERIMENT RESULTS

The results of the experiment show that the purposed
framework detailed in section III is capable of generating
training plans with an superior fitness score, compared to a
random control and a real world elite team seasonal plan,
subject to the following constraints set out in the grammar:

• Elite team periodization structure
• Enforced match training loads
• Upper training load bounds
• Lower training load bounds (MD-1, MD2)

The average rate of convergence can be seen in Figure 2.
This was calculated by taking the population with the lowest
fitness score per generation from each experimental run and
compiling the average of those score over all 30 runs. Error
bars displaying the 95% confidence intervals are also shown,
displaying the extent to which the evolved scores differ
from the elite team and random search across generations.
Based on this figure we can also assert that this optimisation
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method outperforms a random search within a short number of
generations and continues to sharply improve its performance
until a leveling off begins to occur at approximately the 200th
generation. This demonstrates that the current implantation of
the PonyGE2 algorithm has the ability to offer a fast and
precise solution to evolving optimised team sport training
plans. An interesting observation is present when comparing
the evolved training plan fitness scores to that of the elite
team, the performance of the elite team when analysed in the
context of the fitness-fatigue model detailed in section III.C
is considerably worse than the random search control. Based
on this observation one might speculate that a performance
improvement could potentially be obtained simply through
the implantation of constraints, based on sound scientific
principles of training load management, and the adherence to
those constraints.

A comparison of the evolved training loads for the pop-
ulation with the best over all fitness from the 30 runs is
shown in Figure 3. The total training load prescribed by the
evolved training plan was 21% lower than that of the elite
teams’ plan across the entire season. With the differences
being a 32% reduction in the amount of distance covered at
a velocity greater than 5.5 m s−1, this was inline with a 25%
reduction in distance covered less than 5.5 m s−1. A 142%
increase in distance covered decelerating at a rate higher than
3.0 m s−2 contributed most to the over all difference in the
total loads. Comparatively accelerations showed a minimal
increase of 3%. Examining the distribution of training load
values across the training sessions reveals the cyclical behavior
of the evolved plan, which appears to follow a high low pattern
compared to the elite team sport plan which also appears to
fluctuate it’s intensity but to a lesser degree. The effect of
tapering can also be clearly observed in the behaviour of
the evolved training plan, there was significant differences
across all training load measures in sessions that occurred
one or two days prior to a match. A 95-99% reduction in the
distance covered at high speed, accelerating and decelerating
can be observed when MD-1 and MD-2 training sessions are
compared for the evolved and elite team training plans.

V. DISCUSSION

The purpose of this paper was to demonstrate the ability
of grammatical evolution to generate optimised team sport
training plans, using a fitness function based on a physiological
performance model and adhering to formalised constraints set
out in a BNF grammar. The results of experiments show that
PonyGE2 can achieve a good performance for this formu-
lated optimisation problem. The extremely flexible nature of
grammatical evolution easily facilitates the modification of a
problem, this has significant practical benefit given the dy-
namic nature of sports competition. The use of a grammar also
makes it trivial to implement training periodization structures
into the algorithm, macrocycles, mesocycles and microcycles
can be easily notated in the grammar and evaluated within
the fitness function to direct an athletes performance over
multiple training periods. In the current experiment an elite

Fig. 2. The average fitness score of the best population per generation over
30 runs

Gaelic football teams’ retrospective training structure was used
to inform the construction of the grammar, the median value
of the teams training load per match was enforced in the
training structure for the purpose of comparing the evolved
training plans to that of the elite team. The same process
could be used by practitioners to inform training through the
use of tactical periodisation, which aims to peak performance
for matches which are perceived to be the most difficult or
important during the competitive season [25]. This type of
periodisation strategy can be easily implemented through the
manipulation of the grammar, if predicted match loads are
substantially different from the actual loads achieved then
the algorithm can be rerun to update the team sport training
plans accordingly. Based on the structure used to inform the
distribution of training loads across the season, the PonyGE2
algorithm was able to generate feasible and practical solutions
to planning training, however the current structure itself may
not be the optimum way to construct a seasonal training
plan. Refining the optimisation problem to allow the algorithm
to choose other parameters such as the number of training
days and the position of those days relative to a match
could potential lead to an enhanced performance across the
season, based on the current performance model. The novel
use of a fitness function which accounts for multiple training
stressors and considers the balance between them was an
important part of this experiment. An evident flaw in both
the Banister and TSB models are the use of a single global
measure of training stress, and by extension a single rate of
recovery and adaptation. Previous research has shown that
this is an inaccurate assumption [26], our modification of the
training stress balance model attempts to address this flaw,
however further research and refinement is need to determine
the optimal parameters for specific populations and training
activities. The training stress balance model itself can be
criticized for its over simplification of the complex relationship
between training and performance, the model fails to account
for important concepts such as over-training and monotony.
However the intention of this paper was not to validate any
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Fig. 3. Training plan session loads for an elite team, compared with evolved loads over a 22 week period

particular performance model, but to show that a framework
based around grammatical evolution can be used to optimize
team sport training plans with a large degree of flexibility
and performance. This is supported by the generation of plans
which out preform an elite team baseline, using established
training science and performance monitoring methods.

VI. CONCLUSION AND FUTURE WORK

A novel approach to elite team sport training plan generation
is introduced using Grammatical Evolution with significant
potential performance gains realised over a control and an elite
team plan baseline. There is much potential for future work
including the complexification of the grammar encoding to
include periodisation cycles and strategies across the training
year, expanding on the work presented here to include pre-
season training periods. Further refinement of the fitness
function to include relative weightings for the individual load

metrics, and the implementation of more complex models of
performance can be introduced. This approach can also be
extended to other team sport training structures, which may
have more complex training and competitive requirements. In
summary the current methodology is capable of generating
feasible team sport training plans with optimized training loads
based on an implementation of the fitness-fatigue performance
model and established constraints, through the use of the
PonyGE2 Python implementation of Grammatical Evolution.
This approach can be used to safely guide the training
prescription of elite teams and athletes so that enhances in
physiological performance maybe gained, while minimising
the accumulation of fatigue associated with player overload
and increases in injury risk.
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J. J. del Ojo, S. Domı́nguez-Cobo, V. Mañas, and C. Otero-
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