
Mutational Robustness and Structural Complexity in
Grammatical Evolution

Michael O’Neill
Natural Computing Research & Applications Group

School of Business
University College Dublin

Dublin, Ireland
m.oneill@ucd.ie

Anthony Brabazon
Natural Computing Research & Applications Group

School of Business
University College Dublin

Dublin, Ireland
anthony.brabazon@ucd.ie

Abstract—A recent study in Artificial Life found that the need
for mutational robustness can give rise to simpler structures in
an evolving population. This begs the question, do we observe
a similar phenomenon in Genetic Programming? Genetic Pro-
gramming requires the search of structural space of solutions,
usually requiring code growth to find fitter solutions. Typically
Genetic Programming algorithms then suffer from code bloat,
which is code growth in the absence of fitness gains. In this study
we ask a simple question. Would the necessity for mutational
robustness under selection pressure drive the evolution of less
complex solution structures in Genetic Programming, with the
potential to counteract code bloat?

Index Terms—Mutational Robustness, Complexity, Program
Synthesis, Genetic Programming, Grammatical Evolution

I. INTRODUCTION

With some exceptions, biological complexity is considered
to have increased over evolutionary time [1]. The causes of
increased complexity are theorised to be either a function of
selection pressure or due to the operation of the variation
operators, with degeneracy (a form of biological redudancy)
being a key feature [2]. In a recent study in the Artifical
Life literature [3], in the presence of selection, the genera-
tion of increasing complexity is observed in an environment
where functional simplicity has higher fitness. However, with
increased rates of mutation the complexity of the agents
is observed to reduce. That is, the necessity for mutational
robustness can give rise to simpler structures.

GP individuals are open in their structural complexity to
the limit of a maximum tree depth and/or tree node count,
in that their size and architecture can grow and shrink and
varies amongst individuals in a population. Most researchers
in GP have observed the phenomena of code growth (often a
necessity to find a solution), and the problem of code bloat (the
increase in solution size without a corresponding fitness gain),
with many studies developing theory to explain the origin of
code bloat and strategies to prevent excessive bloat, which can
hamper effective evolutionary search.

Mutation is often an under-exploited variation operator in
GP, which has a strong traditional dependence upon subtree

This research is supported by the Science Foundation Ireland under grants
13/IA/1850 and 13/RC/2094.

crossover. Inspired by [3] we ask the question, can structural
complexity in the form of code bloat in GP, be counteracted
by a simple strategy of increased rates of mutation? To state
this another way, does the necessity for mutational robustness
give rise to simpler structures in GP?

The following Section II provides some background to
the key concepts examined in this study with a particular
emphasis on the context of GP. The experimental setup and a
presentation of the results are provided in Sections III and IV,
before we set out our conclusions and point to opportunities
for future research in Section V.

II. BACKGROUND

It is considered that robustness (i.e., the ability for function
to persist after some modification) promotes evolvability in
nature [4], and while genetic robustness can present a paradox
in terms of having low evolvability (i.e., low ability to generate
heritable phenotypic variation, and sometimes referred to as
adaptive innovations) due to the requirement for neutral or
nearly-neutral change events, robustness of phenotypic struc-
tures can have a positive impact on evolvability [5].

In Evolutionary Computation mutational robustness has
included a large focus on neutral evolution and how neutrality
can protect against harmful mutation and improve diversity
(e,g,. [6]–[10]). In GP ideas around evolvability have been
discussed since the early days of the field [11], and there have
been studies on robustness and evolvability under recombina-
tion in Linear GP [12]–[14]. In the related fields of Search-
based Software Engineering and Genetic Improvement there
have been studies of software mutational robustness [15], [16].

Recently in an Artifical Life study [3] researchers observed
that in evolving populations mutational robustness can give
rise to simpler phenotypic structures. This raises an alternative
perspective on the role of mutation in evolutionary systems,
where instead of being for the introduction of novelty, with
the corresponding negative side of this with too high a rate
of mutation, or mutation at the incorrect locus which inflicts
phenotypic impairment, mutation can have a positive impact
through the promotion of simpler structures. This perspective
has not been investigated in the field of GP where search
of structural space is a necessity. One feature of searching

978-1-7281-2153-6/19/$31.00 c©2019 IEEE 1338

structural space is the requirement for code growth. That is
individuals in a population are variable in size and tend to grow
in size over evolutionary time in the search for a candidate
solution. A negative side to code growth, is code bloat, where
individuals grow in size without the benefit of fitness gains.

Bloat at generation g has been defined [17] as

bloat(g) =
(δg − δ0)/δ0
(fg − f0)/f0

(1)

where δg is the average program length at generation g,
and fg is the average population fitness at generation g.
Therefore δ0 and f0 are the average program length and
average population fitness at generation zero, so this definition
of bloat compares the increase in program length relative to
generation zero to the increase in average fitness relative to
generation zero.

Bloat is a consistent problem for GP practitioners impacting
on the efficiency of search, and consequently has been a
significant area of research in the GP community including
development of theoretical foundations and empirical inves-
tigations into the potential origins or causes of bloat and
strategies to mitigate against bloat. In more recent times the
development of the Crossover Bias Theory and the resulting
bloat mitigating operator equalisation by Dignum [18], [19]
has produced a relatively simple and practical approach to
managing bloat within GP populations. The interested reader
is referred to a recent survey on bloat in GP [20].

In the current context where we wish to examine if there
is a relationship between mutational robustness and the com-
plexity of evolving structures, it is interesting to consider
if there might be a corresponding impact on bloat through
its reduction. It is interesting to note that a study of Linear
GP search operators, which promote the inclusion of introns,
and by definition increase bloat, improves performance on the
classification problems examined [21]. Indeed one can find
many contradictory studies around redudancy and neutrality
in EC [6].

TABLE I: Evolution Parameter Settings for PonyGE2

Parameter Value

Population size 500
Generations 500
Initialisation Position Independent Grow

Tree Depth=10
Max Derivation Tree Depth 17
Max Genome Length 500
Selection Tournament (size=5)
Replacement Generational with Elitism (5 elites)
Mutation codon int flip per ind (1 or 2 events per individual)
No Mutation Invalids True
Crossover variable one-point (probability=0.9)
No Crossover Invalids True
Within Used True
Invalid Selection False
Cache True

Lookup Fitness=True
Mutate Duplicates=True

Fitness Function mse
Replications 30 independent runs

III. EXPERIMENTAL SETUP

In this study we set out to address the question, does
the necessity for mutational robustness give rise to simpler
structures in GP? To test this we employ two experimental
setups. The first which permits a single mutation event on the
genome (labelled mutn1), and the second (mutn2) doubles
this allowing two mutation events. The mutation rate in both
setups is deliberately chosen to be conservatively low and
well below the error threshold where selection pressure would
be unable to preserve information in the population. The
null hypothesis states that we will observe no difference in
structural complexity of the phenotype when comparing the
two experimental setups.

In traditional GP the genome and phenome are equivalent
(i.e., they are both the tree), and the complexity of the tree
structure has been previously defined as the number of nodes
in the tree [22]. We employ a grammar-guided form of GP,
Grammatical Evolution [23]–[25] in the form of PonyGE2 [26]
as it embodies an evolutionary algorithm with a genotype-
phenotype mapping appropriate to study an exploration of
the evolution of complexity of both genotypic and phenotypic
structures. To this end we measure the complexity of geno-
types in terms of the number of integer codons in a genome,
and phenotypic complexity as the number of nodes in the
derivation tree and the depth of the derivation tree of each
individual.

The elephant in the room [27] of open issues in the field of
GP [28] is it’s lack of application to automatic programming.
To this end we adopt 12 problems from the Helmuth and
Spector Program Synthesis Benchmark problem set [29]. From
these benchmark problems are drawn two easy (Number IO,
Smallest), two medium (Grade, Last Index of Zero) and eight
hard (Sum of Squares, Compare String Lengths, Scrabble
Score, Checksum, Double Letters, Mirror Image, Pig Latin and
Super Anagrams) problems in terms of levels of difficulty [30].
Greater potential for code growth and bloat is expected as the
problem difficulty level increases. For each problem there is a
set of training data, with fitness being calculated as the mean
square error across the training set. Therefore, our objective
is to minimise error, and lower fitness values are better.

Evolutionary parameters are detailed in Table I. With
the Cache settings employed (Cache=True, Lookup
Fitness=True and Mutate Duplicates=True) du-
plicate individuals are not permitted in the population. If a
duplicate is detected it is mutated until it is unique. Lin-
ear genome mutation and crossover operators are adopted
which prevent the generation of invalid individuals, and their
application is restricted to occur in the expressed region
of the genome (Within Used=True). A derivation-tree
based initialisation (Position Independent Grow) is
used to control variety of tree structures generated up to
the derivation-tree initialisation depth maximum of 10. The
grammars and code are available off-the-shelf from https:
//github.com/PonyGE/PonyGE2.

1339

0 100 200 300 400 500
Generation

50

100

150

200

250

300

350

A
ve

ra
ge

 a
ve

_g
en

om
e_

le
ng

th

Average ave_genome_length

mutn1
mutn2

0 100 200 300 400 500
Generation

10

20

30

40

50

60

70

A
ve

ra
ge

 a
ve

_t
re

e_
no

de
s

Average ave_tree_nodes

mutn1
mutn2

Fig. 1: Number IO (L to R: Genome Length, Tree Nodes)

0 100 200 300 400 500
Generation

8

9

10

11

12

13

14

A
ve

ra
ge

 a
ve

_t
re

e_
de

pt
h

Average ave_tree_depth

mutn1
mutn2

0 100 200 300 400 500
Generation

200

0

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 b
es

t_
fit

ne
ss

Average best_fitness

mutn1
mutn2

Fig. 2: Number IO (L to R: Tree Depth, Best Fitness)

0 100 200 300 400 500
Generation

0

100

200

300

400

500

A
ve

ra
ge

 a
ve

_g
en

om
e_

le
ng

th

Average ave_genome_length

mutn1
mutn2

0 100 200 300 400 500
Generation

20

40

60

80

100

A
ve

ra
ge

 a
ve

_t
re

e_
no

de
s

Average ave_tree_nodes

mutn1
mutn2

Fig. 3: Grade (L to R: Genome Length, Tree Nodes)

1340

IV. EXPERIMENTAL RESULTS

Figures 1, 2, 3, 4, 5, and 6 show genotypic complexity
(number of codons in a genome), phenotypic complexity
(nodes in a derivation tree and tree depth) and the evolution
of best fitness over time on a sample of the easy, medium and
hard difficulty program synthesis benchmarks with error bars.
The lower mutation setup is labelled mutn1, and the higher
mutation rate setup is labelled mutn2 in each case.

It is observed that in the presence of the higher rate of
mutation phenotypic complexity is lower on all of the 8 harder
problem instances (the standard deviations of the low and
high mutation rate setups are not overlapping on the average
derivation-tree node count or on the average derivation tree
depth). However, on the easy and medium difficulty instances
this relationship is not observed with the exception of the
average tree depth at the end of runs on the two medium
difficulty problems. While there is some reduction in genome
complexity, the average genome length standard deviations are
overlapping on the two setups across all problem instances.
Similarly, the difference in fitness attained at the end of the
run on all problem instances is not significant.

In a control setup where there is no mutation or crossover,
evolution is purely driven by selection and replacement, we
observe mean derivation tree node counts remaining relatively
static around 15, 17 and 18 for the easy, medium and hard
sample problems, which corresponds to values observed in
the earlier generations in the right-hand side of Figures 1,
3 and 5. In the same control setup tree-depth remains static
around 8, 9 and 10 for the easy, medium and hard sample
problem instances respectively. For comparison see the left-
hand side of Figures 2, 4 and 6 where these correspond closely
with the mean initialised depths. In the control setup we also
observe mean genome lengths to remain static around 20
codons across the sample problems corresponding again to
earlier generations as illustrated in the left-hand of Figures 1,
3 and 5. These observations of node count and tree depths on
the control setup confirms that code growth and bloat is not
occurring purely as a function of run-time/generations.

For the both the high (mutn2) and low (mutn1) mutation
rate setups it is also be observed that the genome complexity
is much higher than the resulting phenotype complexity mea-
sures, indicating that there are large portions of the genome
which are not expressed in the generation of the phenotypes.
This is confirmed examining the ratio of the expressed genome
to the genome length in Figures 7, 8 and 9 where towards the
end of the run less than one fifth of the genome is used across
all problem instances.

Note that the maximum derivation-tree depth permitted in
the population is 17, and the maximum genome length is 500
codons. While on average we do not observe a depth of 17
being reached on any of the problem instances, this is in effect
a primitive mechanism for code growth prevention, with the
possibility that some crossover events have been prevented
from occurring due to their violating this depth limit. Similarly
the maximum genome length is a control over genotypic

complexity and this limit is approached on a number of the
problem instances. It would be interesting to observe what
occurs if these primitive structural limits are relaxed to a larger
number. Will we observe an increased difference between the
phenotypic structures under the different rates of mutation?

Do we observe an impact of the rate of mutation on bloat?
We undertake a post-hoc analysis of the average derivation-
tree node count and average population fitness and calculate
bloat using a modified equation to the one adopted in [17].
We modify Equation 1 as this definition assumes lengths
(derivation-tree node counts) increase over time, and it also
assumes that the lowest length is at generation zero. As
these do not always hold true in GE (we tend to observe an
initial reduction in lengths in early generations before growth
occurs), instead of using average tree node counts at generation
zero as a reference point, we find the generation at which the
lowest average tree node count occurs and use this δmin in
place of δ0. Our new bloat equation becomes:

bloat(g) =
(δg − δmin)/δmin

(fg − f0)/f0
(2)

Figures 10, 11 and 12 illustrate on the sample problems
what we observe on the majority of problems (8 out of the
12 examined) that the higher rate of mutation setup (mutn2)
results in reduced bloat.

V. CONCLUSIONS & FUTURE WORK

In addressing the question, does the necessity for mutational
robustness give rise to simpler structures in GP?, in our
experiments we observe a reduction in structural complexity of
phenotypes on harder problem instances under higher rates of
mutation without a significant loss of fitness. We also observe a
reduction in code bloat on 8 out of the 12 problems examined.
These results suggest an important role for mutation in GP
algorithms as a potential mechanism to facilitate control of
code bloat, but perhaps more importantly to facilitate the
generation of simpler structures. Future work will include
extending the problem set, and testing different flavours of
GP such as PushGP, CGP, traditional Koza-style GP etc to
see if we observe similar behaviour under increased rates of
mutation.

REFERENCES

[1] C. Adami, “What is complexity?” BioEssays, vol. 24, no. 12, pp. 1085–
1094, 2002.

[2] J. M. Whitacre, “Degeneracy: a link between evolvability, robustness
and complexity in biological systems,” Theoretical Biology and
Medical Modelling, vol. 7, no. 1, p. 6, Feb 2010. [Online]. Available:
https://doi.org/10.1186/1742-4682-7-6

[3] V. Liard, D. Parsons, J. Rouzaud-Cornabas, and G. Beslon, “The
complexity ratchet: Stronger than selection, weaker than robustness,”
The 2018 Conference on Artificial Life: A Hybrid of the European
Conference on Artificial Life (ECAL) and the International Conference
on the Synthesis and Simulation of Living Systems (ALIFE), pp.
250–257, 2018. [Online]. Available: https://www.mitpressjournals.org/
doi/abs/10.1162/isal a 00051

[4] O. C. Lenski RE, Barrick JE, “Balancing robustness and evolvability,”
PLoS Biol, vol. 4, p. 428, 2006.

[5] A. Wagner, “Robustness and evolvability: a paradox resolved,” Proceed-
ings of the Royal Society B: Biological Sciences, vol. 275, no. 1630, pp.
91–100, 2008.

1341

0 100 200 300 400 500
Generation

8

9

10

11

12

13

14

15

A
ve

ra
ge

 a
ve

_t
re

e_
de

pt
h

Average ave_tree_depth

mutn1
mutn2

0 100 200 300 400 500
Generation

200

250

300

350

400

450

A
ve

ra
ge

 b
es

t_
fit

ne
ss

Average best_fitness

mutn1
mutn2

Fig. 4: Grade (L to R: Tree Depth, Best Fitness)

0 100 200 300 400 500
Generation

0

100

200

300

400

500

A
ve

ra
ge

 a
ve

_g
en

om
e_

le
ng

th

Average ave_genome_length

mutn1
mutn2

0 100 200 300 400 500
Generation

20

40

60

80

100

120

140

160

180

A
ve

ra
ge

 a
ve

_t
re

e_
no

de
s

Average ave_tree_nodes

mutn1
mutn2

Fig. 5: Sum of Squares (L to R: Genome Length, Tree Nodes)

[6] E. Galvan-Lopez, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon,
“Neutrality in evolutionary algorithms... what do we know?” Evolving
Systems, vol. 2, no. 3, pp. 145–163, Sep. 2011.

[7] T. Hu, J. Payne, J. Moore, and W. Banzhaf, “Robustness, evolvability,
and accessibility in linear genetic programming,” in Proceedings of the
14th European Conference on Genetic Programming, EuroGP 2011, ser.
LNCS, S. Silva, J. A. Foster, M. Nicolau, M. Giacobini, and P. Machado,
Eds., vol. 6621. Turin, Italy: Springer Verlag, 27-29 Apr. 2011, pp.
13–24.

[8] W. Banzhaf, “Genotype-phenotype-mapping and neutral variation – a
case study in genetic programming,” in Parallel Problem Solving from
Nature III, ser. LNCS, Y. Davidor, H.-P. Schwefel, and R. Männer,
Eds., vol. 866. Jerusalem: Springer-Verlag, 9-14 Oct. 1994, pp.
322–332. [Online]. Available: ftp://lumpi.informatik.uni-dortmund.de/
pub/biocomp/papers/ppsn94.ps.gz

[9] A. Wagner, “Robustness, evolvability, and neutrality.” FEBS Letters, vol.
579, pp. 1772–8, 2005.

[10] M. Ebner, M. Shackleton, and R. Shipman, “How neutral networks
influence evolvability,” Complexity, vol. 7, no. 2, pp. 19–33,
2001. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/cplx.10021

[11] L. Altenberg, “The evolution of evolvability in genetic programming,”
in Advances in Genetic Programming, K. E. Kinnear, Jr., Ed.

MIT Press, 1994, ch. 3, pp. 47–74. [Online]. Available: http:
//dynamics.org/∼altenber/PAPERS/EEGP/

[12] T. Hu, W. Banzhaf, and J. H. Moore, “Robustness and evolvability of
recombination in linear genetic programming,” in Proceedings of the
16th European Conference on Genetic Programming, EuroGP 2013, ser.
LNCS, K. Krawiec, A. Moraglio, T. Hu, A. S. Uyar, and B. Hu, Eds.,
vol. 7831. Vienna, Austria: Springer Verlag, 3-5 Apr. 2013, pp. 97–108.

[13] ——, “The effects of recombination on phenotypic exploration and
robustness in evolution,” Artificial Life, vol. 20, no. 4, pp. 457–470, Oct.
2014, ten thousandth GP entry in the genetic programming bibliography.

[14] T. Hu, “Evolvability and rate of evolution in evolutionary computation,”
Ph.D. dissertation, Department of Computer Science, Memorial
University of Newfoundland, ST. John’s, Newfoundland, Canada,
May 2010. [Online]. Available: http://www.mun.ca/computerscience/
graduate/thesis TingHU.pdf

[15] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest,
“Software mutational robustness,” Genetic Programming and Evolvable
Machines, vol. 15, no. 3, pp. 281–312, Sep. 2014. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.416.675

[16] J. Petke, “New operators for non-functional genetic improvement,”
in GI-2017, J. Petke, D. R. White, W. B. Langdon, and
W. Weimer, Eds. Berlin: ACM, 15-19 Jul. 2017, pp. 1541–
1542. [Online]. Available: http://geneticimprovementofsoftware.com/

1342

0 100 200 300 400 500
Generation

9

10

11

12

13

14

15

16

A
ve

ra
ge

 a
ve

_t
re

e_
de

pt
h

Average ave_tree_depth

mutn1
mutn2

0 100 200 300 400 500
Generation

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

A
ve

ra
ge

 b
es

t_
fit

ne
ss

Average best_fitness

mutn1
mutn2

Fig. 6: Sum of Squares (L to R: Tree Depth, Best Fitness)

0 100 200 300 400 500
Generation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
at

io
 o

f E
xp

re
ss

ed
 G

en
om

e
to

 G
en

om
e

Le
ng

th

Ratio of Expressed Genome to Genome Length

mutn1
mutn2

Fig. 7: Ratio of Expressed Genome to Genome Length on
Number IO

0 100 200 300 400 500
Generation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
at

io
 o

f E
xp

re
ss

ed
 G

en
om

e
to

 G
en

om
e

Le
ng

th

Ratio of Expressed Genome to Genome Length

mutn1
mutn2

Fig. 8: Ratio of Expressed Genome to Genome Length on
Grade

0 100 200 300 400 500
Generation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
at

io
 o

f E
xp

re
ss

ed
 G

en
om

e
to

 G
en

om
e

Le
ng

th

Ratio of Expressed Genome to Genome Length

mutn1
mutn2

Fig. 9: Ratio of Expressed Genome to Genome Length on Sum
of Squares

0 100 200 300 400 500
Generation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

B
lo

at

Bloat

mutn1
mutn2

Fig. 10: Bloat on Number IO

1343

0 100 200 300 400 500
Generation

0

1

2

3

4

B
lo

at

Bloat

mutn1
mutn2

Fig. 11: Bloat on Grade

0 100 200 300 400 500
Generation

0

1

2

3

4

5

6

7

8

B
lo

at

Bloat

mutn1
mutn2

Fig. 12: Bloat on Sum of Squares

wp-content/uploads/2017/05/petke2017 operators.pdf
[17] L. Vanneschi, M. Castelli, and S. Silva, “Measuring bloat, overfitting

and functional complexity in genetic programming,” in GECCO ’10:
Proceedings of the 12th annual conference on Genetic and evolutionary
computation, J. Branke, M. Pelikan, E. Alba, D. V. Arnold, J. Bongard,
A. Brabazon, J. Branke, M. V. Butz, J. Clune, M. Cohen, K. Deb,
A. P. Engelbrecht, N. Krasnogor, J. F. Miller, M. O’Neill, K. Sastry,
D. Thierens, J. van Hemert, L. Vanneschi, and C. Witt, Eds. Portland,
Oregon, USA: ACM, 7-11 Jul. 2010, pp. 877–884.

[18] S. Dignum and R. Poli, “Generalisation of the limiting distribution
of program sizes in tree-based genetic programming and analysis of
its effects on bloat,” in GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation, D. Thierens,
H.-G. Beyer, J. Bongard, J. Branke, J. A. Clark, D. Cliff, C. B.
Congdon, K. Deb, B. Doerr, T. Kovacs, S. Kumar, J. F. Miller,
J. Moore, F. Neumann, M. Pelikan, R. Poli, K. Sastry, K. O. Stanley,
T. Stutzle, R. A. Watson, and I. Wegener, Eds., vol. 2. London:
ACM Press, 7-11 Jul. 2007, pp. 1588–1595. [Online]. Available:
http://www.cs.bham.ac.uk/∼wbl/biblio/gecco2007/docs/p1588.pdf

[19] ——, “Operator equalisation and bloat free GP,” in Proceedings of the
11th European Conference on Genetic Programming, EuroGP 2008,
ser. Lecture Notes in Computer Science, M. O’Neill, L. Vanneschi,
S. Gustafson, A. I. Esparcia Alcazar, I. De Falco, A. Della Cioppa,
and E. Tarantino, Eds., vol. 4971. Naples: Springer, 26-28 Mar. 2008,
pp. 110–121.

[20] S. Silva, S. Dignum, and L. Vanneschi, “Operator equalisation for bloat
free genetic programming and a survey of bloat control methods,”
Genetic Programming and Evolvable Machines, vol. 13, no. 2, pp. 197–
238, Jun. 2012.

[21] M. Brameier and W. Banzhaf, “Neutral variations cause bloat in
linear gp,” in Genetic Programming, Proceedings of EuroGP’2003,

ser. LNCS, C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and
E. Costa, Eds., vol. 2610. Essex: Springer-Verlag, 14-16 Apr. 2003,
pp. 286–296. [Online]. Available: http://www.springerlink.com/openurl.
asp?genre=article&issn=0302-9743&volume=2610&spage=286

[22] E. J. Vladislavleva, G. F. Smits, and D. den Hertog, “Order of nonlinear-
ity as a complexity measure for models generated by symbolic regression
via pareto genetic programming,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 2, pp. 333–349, Apr. 2009.

[23] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary
Automatic Programming in a Arbitrary Language, ser. Genetic
programming. Kluwer Academic Publishers, 2003, vol. 4. [Online].
Available: http://www.wkap.nl/prod/b/1-4020-7444-1

[24] I. Dempsey, M. O’Neill, and A. Brabazon, Foundations in Grammatical
Evolution for Dynamic Environments, ser. Studies in Computational
Intelligence. Springer, Apr. 2009, vol. 194. [Online]. Available:
http://www.springer.com/engineering/book/978-3-642-00313-4

[25] C. Ryan, M. O’Neill, and J. J. Collins, Eds., Handbook of Grammatical
Evolution. Springer, Sep. 2018.

[26] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg,
and M. O’Neill, “PonyGE2: Grammatical evolution in python,” in
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, ser. GECCO ’17. Berlin, Germany: ACM, 15-19 Jul.
2017, pp. 1194–1201. [Online]. Available: http://doi.acm.org/10.1145/
3067695.3082469

[27] M. O’Neill and D. Fagan, “The elephant in the room: Towards the
application of genetic programming to automatic programming.” in
Genetic Programming Theory and Practice XVI., ser. Genetic and
Evolutionary Computation., S. L. Banzhaf W., Spector L., Ed. Springer,
2019, pp. 179–192.

[28] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, “Open
issues in genetic programming,” Genetic Programming and Evolvable
Machines, vol. 11, no. 3/4, pp. 339–363, Sep. 2010, tenth Anniversary
Issue: Progress in Genetic Programming and Evolvable Machines.

[29] T. Helmuth and L. Spector, “General program synthesis benchmark
suite,” in GECCO ’15: Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, S. Silva, A. I. Esparcia-Alcazar,
M. Lopez-Ibanez, S. Mostaghim, J. Timmis, C. Zarges, L. Correia,
T. Soule, M. Giacobini, R. Urbanowicz, Y. Akimoto, T. Glasmachers,
F. Fernandez de Vega, A. Hoover, P. Larranaga, M. Soto, C. Cotta,
F. B. Pereira, J. Handl, J. Koutnik, A. Gaspar-Cunha, H. Trautmann,
J.-B. Mouret, S. Risi, E. Costa, O. Schuetze, K. Krawiec, A. Moraglio,
J. F. Miller, P. Widera, S. Cagnoni, J. Merelo, E. Hart, L. Trujillo,
M. Kessentini, G. Ochoa, F. Chicano, and C. Doerr, Eds. Madrid,
Spain: ACM, 11-15 Jul. 2015, pp. 1039–1046. [Online]. Available:
http://doi.acm.org/10.1145/2739480.2754769

[30] S. Forstenlechner, “Program synthesis with grammars and semantics in
genetic programming,” Ph.D. dissertation, University College Dublin,
2019.

1344

