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Abstract—Learning as a form of adaptation has been shown
to benefit the evolutionary process through the Baldwin Effect,
promoting the adaptivity of an evolving population. Learning
generally can be classified into two types: asocial learning, e.g.,
trial-and-error; and social learning, e.g., imitation learning. Re-
cent research has shown that a learning strategy (or learning rule)
– which combines social and asocial learning in a strategic way
– can be more adaptive than either type of learning functioning
alone. However, this general finding leaves open the important
question as to how best to combine these forms of learning in
differing environmental conditions. This paper investigates this
question under a variety of environmental dynamics and also
provides some indications for future work.

Index Terms—Baldwin Effect, Social Learning, Dynamic En-
vironment, Phenotypic Plasticity, Cultural Evolution

I. INTRODUCTION

Evolution and learning are complementary forms of adapta-
tion by which an organism can adapt its behaviour in response
to environmental challenges. While evolution can ‘hard wire’
patterns of behaviour, learning permits a significantly higher
degree of behavioural plasticity in response to environmental
conditions which in turn can enhance the chances of survival
of an organism. In particular, when the external environment is
highly dynamic, learning can permit much faster behavioural
adaptation than occurs via a multi-generational evolutionary
process. Indeed, evolution and lifetime learning are closely
intertwined, as a capability for lifetime learning can only
arise as a result of an evolutionary process. Perhaps less
evidently, the linkage also goes the other way and learning can
significantly influence the evolutionary process and therefore
enhance the adaptivity of a species over time.

This phenomenon is termed the Baldwin Effect and was
demonstrated in a classic simulation paper by Hinton and
Nowlan (henceforth H&N) [1]. This paper stimulated a num-
ber of important follow-on studies including [2], [3], [4].
However, it is noticeable that apart from some recent pa-
pers by [5], [6], the influence of learning on evolution has
subsequently been little studied in the field of Evolutionary
Computation (EC) [7], despite the fact that many problem
domains addressed by EC are inherently dynamic [8].

Delving a little deeper into lifetime learning, this category
can be subdivided into Asocial (or individual) learning (IL)
– learning by oneself through direct interaction with the
environment, e.g., trial-and-error, and social learning (SL)

– learning from others, e.g., imitation. Each is a plausible
way for an individual agent to acquire information from the
environment at the phenotypic level. SL has been observed
in organisms as diverse as primates, birds, fruit flies, and
especially humans [9]. Social learning can be considered as
a form of ‘information-parasitism’ as an individual can only
socially learn from information produced by others. A key
open question in the learning literature is how best to combine
IL and SL under different environmental dynamics [10]. A rule
for combining of each type of learning is termed a ‘learning
strategy’ and such strategies can be more adaptive than either
IL or SL alone [5], [11].

The main aim of this paper is to investigate the effect that
different forms of learning strategies can have on the evolu-
tionary process when dealing with rapidly changing environ-
ments. We extend previous work on evolutionary optimisation
[6], combining evolution with learning strategies to test how
the combination of social and asocial learning performs. In
the remainder of this contribution, we initially overview some
prior research on learning and evolution and some important
concepts from social learning are introduced. We then describe
our experimental design, provide our results and discuss the
same. Finally, some directions for future work are proposed.

II. BACKGROUND

A. Evolution and Learning

In 1987, the British Cognitive Scientist Geoffrey Hinton and
his colleague Steven J. Nowlan at CMU presented a classic
paper [1] which demonstrated an instance of the Baldwin
effect using a computer simulation. Hinton and Nowlan used
a Genetic Algorithm to evolve a population in a Needle-in-a-
haystack landscape showing that learning can help evolution
to search for a solution when evolutionary search alone is
ineffective. An interesting idea which can be extracted from
their work is that instead of genetically fixing the structure of
the genotype ab initio, permitting elements of the genotype
to remain plastic, and therefore to be ‘learnable’ during the
evolutionary process provides a much easier route for the
population to eventually uncover determine the solution to the
difficult optimisation problem. Crucially, the H&N landscape
– although difficult – is static.

The model developed by Hinton and Nowlan, opened up
an initial surge of interest in the investigation of the in-
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teraction between learning and evolution. Exemplars of this
work include studies examining the Baldwin effect in an
NK-fitness landscape [12], and [13]. Their results, again,
demonstrated that the Baldwin Effect does occur, and learning
helps evolutionary search overcome the difficulty of a rugged
fitness landscape.

B. Social Learning

SL has been studied in various disciplines, including Cog-
nitive Biology, Evolutionary Psychology, Behavioral Ecology,
Cognitive Science and Robotics. In general, SL covers several
mechanisms through which individual organisms learn from
others, such as stimulus enhancement, observational condi-
tioning, imitation, and emulation (please refer to [9], [14],
[15] for more detail of these mechanisms). In this study we
focus on one of these mechanisms, namely imitation learning.
In this instance of learning, the observer directly copies the
behavior of the observed organism (physical or digital) in order
to complete a novel task.

SL, at first glance, seems to be a low-cost, adaptive, mecha-
nism as individual agents can acquire information from others
without incurring the cost of trial-and-error learning. Thus, it is
plausible to think that SL will result in more effective learning
outcomes. Contrary to this belief, it has been found that agents
should not learn socially all the time [16], [17], [11]. It is
argued that individual learners produce new information about
the environment, though at a cost. In contrast, social learners
avoid this cost by copying the existing behaviors of others,
but do not themselves generate any new information about the
environment. Therefore, it is highly likely that social learners
will copy outdated information when the environment changes,
reducing the average fitness of the population.

Several theoretical models have been proposed to investigate
how to use SL effectively [18], [19], [16]. It is said that
social learning should be combined with individual learning
in a strategic way in order to produce an adaptive advantage.
Social learning strategies consist of rules specifying the way
an individual relies on social learning by answering three
questions:

i. When an individual should learn;
ii. From whom they should learn; and

iii. What information should be learned.
The question of when to copy covers the decision as to

when to seek social information. Whom to copy may depend
on factors such as the social structure of the population and the
ability of the individual to recognise whether other individuals
are obtaining higher payoffs. Possibilities include the copying
of the most successful individual, copying of kin, or adherence
to a social norm by copying the majority. What to copy
considers which behavior or more specifically what part of
that behavior to copy.

In addition to the Who question, the transmission from
demonstrators to observers are classified into three types
([20]). The first is vertical transmission – transmission from
parents to their children. The second is oblique transmission
in which cultural traits will be passed to an individual from

a (non-parent) member of the previous generation. The final
mechanism, horizontal transmission, occurs when an observer
learns from a demonstrator in its current generation. In the
scope of this paper, we only use oblique transmission in our
experiments, leaving the examination of other mechanisms for
future work.

Evolutionary Algorithms (EAs) have been widely applied
for the purposes of solving dynamic optimisation problems [8].
Prima facie, this would appear to be a reasonable approach as
biological evolution is situated in a dynamic environment and
has proven itself capable of generating an almost infinite vari-
ety of organisms, each inhabiting a dynamic ecological niche.
Many mechanisms have been used in developing EA variants
for dynamic problem environments with simple approaches
implementing varying approaches for the maintenance of
populational diversity, or the rapid adaptation of the population
when environmental change is detected.

Though these techniques can produce good results in spe-
cific problem instances, it does not concord with the multiple
layer learning found in most biological organisms. Taking on
this line of thought, some studies have combined individual
learning with evolutionary search, resulting in higher perfor-
mance in a simple dynamic optimisation instance [6].

Recently, a model building on H&N’s simulation was pre-
sented in [5], in which the authors combine evolution, asocial
and social learning. It was shown that social learning alone
fails when presented with a Needle-in-a-haystack landscape,
but social learning when coupled with individual learning suc-
cessfully outperformed individual learning alone with respect
to average fitness of the population. The study also indicated
that the combination of social and asocial learning can increase
the adaptivity of plasticity. Specifically, the higher the level of
plasticity, the higher the average fitness of the population.

In this paper, we extend this research by combining individ-
ual and social learning to see if that combination can promote
the evolutionary search at a greater scale. In the following
section, we describe the experimental design and the algorithm
we use to combine evolution, individual and social learning.

III. EXPERIMENTAL DESIGN

A. The Dynamic String Match Problem

The chosen problem domain is the String Match problem,
in which the objective is to match a target string. The String
Match problem bears close parallel with many real-life prob-
lem domains, and it can be seen in a wide range of contexts,
such as in Immune Systems (both natural and artificial), and
in Antivirus or Intrusion Detection systems. All these systems
need some sort of string matching mechanism to match their
dictionaries to an incoming signal to determine whether a
signal is abnormal or not. In the scope of this paper, we
propose a simple instance of the String Match problem, in
which the target string contains only binary characters (0 or
1). Crucially, the target string changes over time forming a
dynamic problem. For simplicity, we restrict the length of the
target string to 20.
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Suppose we are evolving a population of binary genotypes
to solve this string match problem. The fitness of an individual
is calculated as the proportion of matched characters between
the individual and the target over the number of characters
(the length of the target string). Mathematically, the fitness of
an individual xi (with phenotype pi) is computed as:

f(xi) =
Number of matched characters

Length of the target string
= 1 − dist(pi, target)

length(target)
(1)

where dist(pi, target) is the Hamming distance between
the phenotype pi and the target. Based on this fitness function,
an individual with higher proportion of matching bits has a
higher fitness; and the higher the fitness value, the better the
individual. The optimal individual has the fitness of 1, whereas
the worst possible fitness value is 0.

Without loss of generality, suppose we have to match the
original string 111...11 (i.e., 20 ones). The target will change
based on two parameters: the frequency and magnitude of
change. The first parameter tells us after how many generations
the target will move to another point in the landscape, while
the latter helps determine the likelihood of change for each
element (bit) of the target. Assume that at generation g the
target is all-one (20 bits of one), frequency = 10 and magnitude
= 0.1 (10%). This informs us that after 10 generations or at
generation g+10 the target t = 111...1 (20 bits of 1) is likely
to be changed. The magnitude of 0.1 tells us that there are,
on average, 20 × 10% = 2 bits in the target that are likely
to be modified. For each bit in the target sequence, a random
number is generated and then compared with the magnitude: if
the random value is less than 0.1, the current bit is mutated to
its subtraction from 1 (1 becomes 0, and vice versa). Suppose
the new target at generation g + 10 is t1 = 001...1 (two first
bits are changed).

B. Experimental Setup

1) Experimental Setup I: Evolution + Asocial Learning:

The first setup evolves a population of individuals with
learning capabilities. The evolutionary process is implemented
as an evolutionary algorithm. In this simulation, we also allow
lifetime learning in the form of asocial learning, in addition
to evolutionary algorithm, to update the phenotype of the
individual. To allow for lifetime learning we used the same
encoding scheme as in [5], [1], [11]: Instead of being fully
specified, the genotype now is composed of three alleles ‘0’,
‘1’, and ‘?’. The allele ‘?’ allows for lifetime learning (or
plasticity). Each agent will have 100 rounds of learning during
its lifetime. On each round, an individual agent is allowed to
do individual learning by changing its allele ‘?’ to either ‘0’ or
‘1’ as the expressed value. Thus, the behaviour of an individual
agent is partly specified by its genetic composition, and partly
by what it learns in the course of its lifetime.

At each generation, two individuals are selected from the
population as parents to produce one child. The newly-born
child is mutated with a small probability, and is then added into

a new population. This process repeats until the new popula-
tion is completed upon which it replaces the old population of
parents, i.e., the process consists of generational replacement
without elitism.

When an individual learns, it updates its phenotypic be-
haviour, and hence its fitness. However, instead of being
implemented as a blind random search as in previous work
[5], we devise a new learning algorithm as a hill-climbing
process. The learning algorithm adopted by every individual
is presented as Algorithm 1 below.

Algorithm 1 Learning

1: function LEARNING(ind)
2: best fitness = ind.fitness
3: best phenotype = ind.phenotype
4: while ind.learning attempts < max attempts do
5: ind.learning attempts+ = 1
6: Flip all question marks to get a new phenotype
7: best fitness =

compute fitness(ind.phenotype)
8: if best fitness > ind.fitness then
9: ind.fitness = best fitness

10: best phenotype = ind.phenotype
11: end if
12: end while
13: ind.phenotype = best phenotype
14: end function

The above algorithm is relatively self-explanatory. When
an individual expresses a new phenotypic behaviour, it checks
whether the new behaviour is more adaptive than the current
before deciding whether the current phenotype is replaced
by the new one. This process helps each agent keep its best
behaviour as its current phenotype.

After lifetime learning, the population goes through the
evolutionary process as follows. At each generation, two indi-
viduals are selected from the population as parents to produce
one child. This process repeats until the new population is
filled up and replaces the old population of parents. No
mutation is employed in the current work as in previous studies
[11], [5].

2) Experimental Setup II: Evolution + Learning Strategies:

In the second setup, we evolve populations of strategic
individuals - individuals that can perform both SL and IL
based on a learning rule. In order to implement social learning,
first we propose the imitation procedure, with pseudo-code
described in algorithm 2 below. This presents the process
by which an individual observer imitates the phenotype of
its demonstrator. The imitative process starts by extracting
the positions of question marks in the phenotype of the
observer. For each question mark position, the observer will
copy exactly the trait from the demonstrator.

The population now has just one type of individual -
strategic individuals that can learn both asocial and socially.
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Algorithm 2 IMITATION

1: function IMITATION(observer, demon)
2: questions = [] comment: question mark array

3: for position i ∈ observer.pheno do
4: if i =? then
5: questions.add(i)
6: observer.learning attempt += 1
7: end if
8: end for
9: for i ∈ questions do

10: observer.pheno(i) = demon.pheno(i)
11: end for
12: end function

We specify the learning strategy for every individual agent as
follows: At each generation, an agent first observes and learns
socially from its demonstrator, then learns asocially on its own
until the maximum learning attempt is reached. This scenario
can be interpreted as a novice first copies from an expert,
then sharpens what it has learned to further its own quality. In
the scope of this study, we test on with oblique transmission –
the individual agent learns from one individual in the previous
generation. This also means that there is no social learning at
the initial generation. In our current study, all the individuals
at each generation have the same demonstrator – the best
individual agent from in terms of fitness belonging to the
previous generation. After lifetime learning process for each
agent, the population goes through selection and reproduction
as in EVO+IL.

We run our experiments through 9 different combinations
of frequency and magnitude. It can be understood that the
lower the frequency value, the faster the target will change; the
bigger the value of magnitude, the bigger the change of the
target. The environment becomes more dynamic or harder to
cope with by faster changing and bigger magnitude of change,
and vice versa. We also compare the two populations when the
environment is static, the target is kept stable over generations.
It is interesting that in this sense our problem becomes the
canonical one-max problem – a trivial problem solvable by
Genetic Algorithms.

TABLE I: Parameter setting

Parameter Value

Original target 111...1 (20 bits of 1s)
Genome length 20
Replacement Generational
Generations 51
Elitism No
Population size 100
Selection Fitness-Proportionate selection
Reproduction Sexual reproduction
Fitness function Equation 1
Max learning attempts 50
Frequency 5, 10, 20
Magnitude 0.05, 0.1, 0.2
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Fig. 1: Best fitness – when the environment is static
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Fig. 2: Average fitness – when the environment is static

IV. RESULTS, ANALYSIS AND EXPLANATION

In this section we present the comparison between the two
experimental setups, evolving populations with and without
learning, in terms of both best fitness and average fitness of
the population. All results are averaged over 30 independent
runs.

A. When the environment is static

As noted above, our problem becomes onemax-like (as
the initial target string is comprised of all ones) when the
environment is static – EVO+IL was shown to find the correct
solution easily in the previous study [6]. It can be seen
in Figure 1 and 2 there is no clear difference between the
performance of EVO+IL and EVO+Strategy as the evolution
progresses.

Despite that the EVO+Strategy population still shows some
small advantage in terms of the best fitness since it can find
the solution much quicker than the EVO+IL.

One simply short explanation for this behaviour is that when
the environment is stable, the problem is easy enough (the one-
max in this case) so that even evolution alone is sufficient to
encode the information of the environment for the population
(can find the solution). Moreover, asocial learning was also
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showed to quicken the solution-seeking procedure through the
hill-climbing process [11]. Therefore, adding social learning
before asocial learning may have some advantage in early
generations, but does not bring much benefit in terms of
finding the fixed target solution as time goes by. In the
following section, we provide an explanation in a greater detail
which is for dynamic environments but also captures the static
scenario.

B. When the environment is changing

The main focus of our current work is how learning strategy
performs when the environment is dynamic. Initially, we look
at both the best and the average fitness of the population as
measurements of how well each simulation performs. All plots
are grouped together, sharing the same labels for x-axis and
y-xis as well as the annotation. Each row and column shows
the increasing level of difficulty of the problem from left to
right and from top to bottom.

A similar trend can be simply seen in Figure 3 and Figure
4 that generally there is a fall in both the best fitness and
the average fitness of all environmental circumstances at the
generation when the environment changes. This is expected
because as the environment changes and becomes harder,
adaptive behaviors from previous generations are no longer
adaptive in the current generation, reducing the performance
of the population. By looking at the behavior of each corre-
sponding line through each row or each column of Figure 4,
we can see another shared behavior that the more difficult the
environment, the lower the average fitness of the population.

Another shared behaviour can be observed is that the
difference between EVO+IL and EVO+Strategy populations
becomes bigger, with respect to both best and average fitness,
when the environment becomes harder over time in the direc-
tion of both frequency and magnitude of change.

Specifically, first we look at the best fitness of the population
as a measurement of how well each simulation performs.
When the frequency of change is 20, the environment changes
at a slow rate between generations. In this case, the two
populations behave relatively similar in the first 2 instances of
the magnitude, and show some divergence at the end of the run
when the magnitude of change is 0.2 – with %20 of the target
being changed. Looking at the minimum magnitude of change
at 0.05, there is little difference between the two populations,
even when the environment changes after every 2 generations.
Despite that over trend, if we look more closely into the best
fitness it can be seen that the EVO+Strategy population can
reach the best fitness more quickly that the EVO+IL.

The magnitude of change shows more effects on the per-
formance of the population. When the magnitude of change is
bigger (0.2 in our experiment), the EVO+Strategy population
demonstrates a better performance than the EVO+IL popula-
tion. This is even clearer when the rate of change between
generations is faster.

All of these observations here can be explained by the
fact that, in any kind of environment, the individual learning
process still does its job – upgrading the current phenotype

of an agent towards the target step-by-step through a hill-
climbing process. Here it is plausible to think that if by some
way an agent has a better base for individual learning, the
result after learning would be better. This is exactly the story
we are talking here and the nature of our learning strategy
mentioned above. Each strategic agent, after being born, first
copies behaviour from the best individual in the previous
generation, then update its behaviour itself through individual
learning. This scenario can be interpreted in casual language
as follows: A novice copies a good enough skill from an
expert, then makes its own effort to upgrade and sharpen that
skill. Through the imitation process, the learning agent has
more chance to have a better phenotype before the individual
learning process takes place. Therefore, strategic agents –
those that can learn from others and on their own – have more
advantage over agents that can only learn individually.

One key thing to be extracted here is that agents in EVO+IL
learn individual based on what evolution provides to the agent
– this is individual learning from scratch with an innate base.
More than this, agents in EVO+Strategy learn individually
based on what has been learned, or found, individually by
agents from previous generations. This creates a form of
cummulative learning process – updating information based
on what has been found so far in the history.

Therefore, in earlier generations when the evolutionary
process plus individual learning from scratch would need more
time to find the best solution, copying from the best seems to
give some initial advantage. This is because the imitation pro-
cess provides a better base for individual learning, compared
to individual learning from innate information only when
the environmental information is not encoded enough. Over
genrations, however, when the environment slightly changes
(or static), even the evolutionary process alone still has time to
encode new information, not to mention the fact that individual
learning will upgrade the phenotype of each agent after being
born and find the solution (as done in previous work [6]).
Since the target is slightly changed, all the individual agents
in EVO+IL still have a chance to move closer and closer to
the target (the solution). If an agent is born close enough to
a specific target, and the target is fixed or changed just by a
small amount, then the agent still can learn individually and
move towards the target easily. There is no huge benefit to
copy from any expert (the demonstrator). This is why adding
social learning before asocial learning does not bring much
benefit in these scenarios.

When the environment becomes more difficult to cope
with, the target is changed by a sufficiently big amount, the
individual learning process still updates the phenotypic infor-
mation to match the target solution. However, the evolutionary
process looses more information over generations. Therefore,
learning from others, or more precisely, learning from what
others have found previously by individual learning is more
advantageous than learning from innate information on one’s
own. This is why EVO+Strategy shows better performance in
terms of the best fitness in all cases. More specifically, the
EVO+Strategy still can find the solution whereas the EVO+IL

2288



0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 20, mag = 0.05

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 20, mag = 0.1

EVO+IL EVO+Strategy

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 20, mag = 0.2

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

Be
st
 F
it
ne

ss

freq = 10, mag = 0.05

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 10, mag = 0.1

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 10, mag = 0.2

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 5, mag = 0.05

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 5, mag = 0.1

0 10 20 30 40 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
freq = 5, mag = 0.2

Fig. 3: Comparative Best Fitness

cannot when the environment becomes harder (the cases when
the magnitude of change is 0.1 or 0.2, and the frequency of
change is 10 or 5).

A similar trend can be observed when comparing the
average fitness of the two populations and the explanation is
the same as above. More importantly, the difference between
the two evolving populations is clearer in terms of average
fitness, even when the environment changes slightly, compared
to that of the best fitness.

The explanation presented above shows a more important
effect in questioning and elucidating why the average fitness
of EVO+Strategy is better than that of EVO+IL. Learning
good behaviours from others which can provide a better base
for individual learning to take place, compared to the based
provided by the evolution alone. This cumulative learning
process can strengthen the behaviour of the population over
time. With the imitation process before individual learning,
every individuals in the learning population would be likely
to have better substrates to learn, updating their behaviour
to match with the target, increasing their fitness, hence the
average fitness of the whole population. This applies for the
whole population, thus the difference in average fitness is a

bit clearer between the two evolving populations, with and
without imitation learning. Learning from others presents a
huge effect on the population as a whole, more than on one
single individual agent.

V. CONCLUSION, FURTHER DISCUSSION, AND FUTURE
WORK

In this paper we have set out to better understand the role of
learning from others in an evolving population under different
environmental dynamics. By employing a simple instance of
dynamic optimisation, our experimental results illustrate that
when the environment is stable or only slightly changing,
adding social learning does not bring much benefit to indi-
vidual learning in helping an evolving population to adapt.
However, when the environment becomes more dynamic (i.e.,
harder), imitation learning shows a clear benefit and facilitates
individual learning, promoting the adaptation of the evolving
population better than is the case under individual learning
alone.

The dynamic problem used in this paper is concisely
described but captures a wide variety of dynamic settings.
While an individual study can of course only directly speak
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Fig. 4: Comparative Average Fitness

to the problem instances tested, the results in this study are
consistent with a more general claim that a combination of
social and individual learning can strengthen the performance
of evolutionary algorithms when dealing with dynamic opti-
misation problems. The ability to learn can help individuals
to efficiently track and follow the changing target. Indeed, the
beneficial effects of social learning extend beyond their ‘first
order’ impact, as an ability to usefully imitate, or learn from
others, also provides better foundations for future individual
learning to subsequently further improve the socially-learnt
information. Future work will look at this aspect and also
examine different dynamic optimisation problems.

The same ideas can also be tested on different problem
domains of Evolutionary Computation, such as Genetic Pro-
gramming [21] in which the phenotype is represented as a
computer program, or Evolutionary Robotics in which Evolu-
tionary Deep Learning (Neuroevolution) [22], [2] techniques
are employed to evolve the brain of agents living in a simulated
world. As occurs in higher-order animals in the biological
world, it is plausible that combining evolution, individual and
social learning will assist in the creation of better simulated
or indeed embodied learning agents.

With respect to philosophical and scientific understand-
ing, what has been presented and explained in this paper
is generally consistent with the nature of knowledge in the
biological world, especially in the case of humans. The human
agents do not rely totally on instinctive behaviour arising
from an evolutionary process but can also learn. More than
this, the learning process in humans is cumulative – we
learn from others and then sharpen what we have learned by
individual learning and all scientific advances rely on what has
gone before. Knowledge is transmitted between and within
generations through a number of channels, including verbal
and written media and via formal educational processes. This
is termed Human Cultural Evolution [20] with social learning
playing a key role in the knowledge transmission process.
Aspects of these processes can be explored via computer
simulations in order to gain insights into the process of cultural
and technological advance. As noted by the Cognitive Scientist
Daniel Dennett [23], ‘Artificial Life can be considered another
way of doing Natural Philosophy’.
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