
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019 1029

A Survey of Statistical Machine Learning
Elements in Genetic Programming

Alexandros Agapitos , Roisin Loughran, Miguel Nicolau , Simon Lucas , Michael O’Neill,
and Anthony Brabazon

Abstract—Modern genetic programming (GP) operates within
the statistical machine learning (SML) framework. In this frame-
work, evolution needs to balance between approximation of an
unknown target function on the training data and generaliza-
tion, which is the ability to predict well on new data. This paper
provides a survey and critical discussion of SML methods that
enable GP to generalize.

Index Terms—Bias-variance tradeoff, classification, general-
ization, genetic programming (GP), model averaging, model
selection, overfitting, regularization, statistical machine learning
(SML), symbolic regression.

I. INTRODUCTION

IN SUPERVISED learning, a labeled example is a pair
(x, y), where x ∈ X is a random vector of explanatory vari-

ables and y ∈ Y is a random response variable associated
with x through a true but unknown mapping g. The vector
of explanatory variables xT = (x1, x2, . . . , xp) may contain
quantitative, ordinal, and categorical variables, whereas the
response variable y is quantitative in the case of regression,
and categorical in the case of classification. A joint probabil-
ity distribution P(x, y) is assumed over the space of labeled
examples. A training sample D of size N is a set of labeled
examples D = {(xi, yi)}N

i=1 that are assumed to be independent
and identically distributed according to P(x, y).

The goal is to use the training sample D to find a function
f : X → Y , such that over the joint distribution P(x, y) the
expected value Ex,y of some specified loss function L(y, f (x))
is minimized

f ∗(x) = arg min
f ∈F

Ex,y
[
L(y, f (x))|D]

(1)

where F is the hypothesis set (i.e., the set of candidate func-
tions f). Examples of loss functions are the squared loss

Manuscript received September 12, 2017; revised March 31, 2018,
August 7, 2018, and November 30, 2018; accepted January 28, 2019. Date of
publication February 21, 2019; date of current version November 27, 2019.
The work of A. Agapitos was supported by the Science Foundation Ireland
under Grant 08/SRC/FM1389. The work of R. Loughran was supported by the
Science Foundation Ireland under Grant 13/IA/1850. (Corresponding author:
Alexandros Agapitos.)

A. Agapitos is with the School of Computer Science, University College
Dublin, Dublin 4, D04 N2E5 Ireland (e-mail: alexagapitos@gmail.com).

R. Loughran, M. Nicolau, M. O’Neill, and A. Brabazon are with the School
of Business, University College Dublin, Dublin 4, D04 N2E5 Ireland.

S. Lucas is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London E1 4NS, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2019.2900916

L(y, f (x)) = (y − f (x))2 for regression, and the zero-one loss
L(y, f (x)) = I(y �= f (x)) for classification, where I(·) is an
indicator function that returns 1 when its argument is true,
and 0 otherwise.

The expected value Ex,y[L(y, f (x))|D] is referred to as gen-
eralization error, where both x and y are drawn from their
joint distribution P(x, y). Here, the training sample D is fixed,
and we expressed the explicit dependence of f on D.

In practice, generalization error Etest cannot be computed
because the distribution P(x, y) is unknown. Instead, a learn-
ing algorithm outputs a function that minimizes the loss
function over the finite training sample. Training error Etrain
minimization is formulated as

f ∗(x) = arg min
f ∈F

1

N

N∑

i=1

L(yi, f (xi)). (2)

Minimizing training error leads to infinitely many solutions;
any function passing through the training points is a solution.
Overfitting is the process where fitting the training data well
no longer indicates that a similar Etest will be attained, and
may actually lead to the opposite effect. The main case of
overfitting is when a function f (1)(x) is chosen over another
function f (2)(x) because of Etrain(f (1)(x)) < Etrain(f (2)(x)),
and this results in Etest(f (1)(x)) > Etest(f (2)(x)). There is a
distinct difference between bad generalization and overfitting.
Bad generalization implies that Etest(f) � Etrain(f), which is
a likely outcome when overfitting has occurred. Overfitting is
the process of picking a function with lower and lower Etrain
resulting in higher and higher Etest.

In problems with multiple training examples (xi, yil), l =
1, . . . , Mi at each input xi the risk of large generalization
error is reduced. If training sample size N is sufficiently
large such that multiple observations at each xi or a small
neighborhood around xi are guaranteed and densely sampled,
then solution f passes through the average values of yil at
each xi, or the average values of yil at a small neighborhood
around xi. This solution approximates the conditional expec-
tation f (x) = E(y|x = xi), when best is measured by average
squared error [1]. In all other cases, in order to obtain a use-
ful function that generalizes for finite N, we must restrict the
eligible solutions in the error minimization problem of (2)
to a smaller set of candidate models, and/or use some kind
of averaging among a committee of models that are diverse
in the way they are constructed. In general, the restrictions
imposed by statistical machine learning (SML) methods can

1089-778X c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7529-681X
https://orcid.org/0000-0002-1981-1300
https://orcid.org/0000-0002-3180-7451

1030 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

be regarded as model complexity restrictions. This translates
to some kind of regular behavior in small neighborhoods of
the input space X. That is, for input points x with small dis-
tance from each other in some metric, a solution exhibits
some kind of nearly constant, linear, or low-order polynomial
behavior [1].

A. Scope of This Paper

We are interested in the problem of generalization when
learning a model of a real-valued or categorical-valued tar-
get function from input–output examples using GP [2].1 A
previous survey article on GP generalization was published in
2002 [3]. This paper provided a description of a framework
for the learning problem, introduced the concept of proba-
bly approximately correct learning, and briefly reviewed some
applications of GP to supervised and reinforcement learning
tasks. A method to dynamically sample training examples
throughout evolution was shown to improve the generaliza-
tion of programs evolved to control an artificial ant on the
Santafe trail.

The survey of the early GP literature in [3] suggested that
the vast majority of research papers have put all emphasis on
the consistency of GP in terms of routinely evolving solu-
tions across a number of independent evolutionary runs. The
sole criterion of a consistent GP system has often been the low
variance of the training error across runs. One of the main con-
clusions of [3] is the lack of independent test sets for assessing
the ability of evolved programs to generalize.

Since 2002 research in GP for symbolic regression and clas-
sification [2], [4] has reached a considerable level of maturity,
and has built on elements rooted in the SML literature. In
addition to consistency, recent GP studies put an emphasis on
generalization; they assess prediction ability on unseen data
using an independent test set, and often benchmark GP against
its sister SML methods. The aim of this paper is to survey and
critically discuss SML methods that enable GP to generalize.

As a final remark, this survey focuses on GP that is realized
through variation operators of recombination and mutation.
A complementary active research thread aims at applying
generative machine learning models to the construction of
expression-tree like programs that represent composition of
functions, known collectively as probabilistic model build-
ing GP (PMBGP) [5]. Examples of generative models that
have been previously used are graphical models in the works
of [6], and probabilistic context-free grammars in the works
of [7]. The authors of a recent survey on the area have already
pointed out [5] that the issues of learning and generalization
in PMBGP are as of time of this writing still at their infancy,
therefore we decided not to address this area of research in
the present survey.

B. Taxonomy of SML Elements in GP

The Elements of Statistical Learning by Hastie et al. [1] was
first published in 2001, and since that time it has become one
of the most important references on the fundamental principles

1In GP, the terms model and program refer to the same entity and will be
used interchangeably.

and methods of SML. The authors provide a comprehen-
sive treatment of SML methods within the model selection
framework of bias-variance tradeoff, which captures the fun-
damental tradeoff between generalization error and model
complexity for a given prediction method and training sample.
For regression problems, the bias-variance tradeoff decom-
poses the expected generalization error into an additive model
of variance and bias terms. Variance refers to the amount by
which model f would change if it is fitted using a different
training sample. In general, more complex models have higher
variance, in which case small changes in the training data can
result in large changes in the produced f . Bias refers to the
error that is introduced by approximating a target function,
which may be very complicated, using a much simpler model.
In general, less complex models will have higher bias. Bias
and variance are two competing properties of SML models. In
order to minimize the expected generalization error we need
an amount of model complexity that simultaneously achieves
low variance and low bias.

In providing a taxonomy of SML elements adopted in
GP we follow a similar organization as in [1]. Model selec-
tion [1, Chs. 3 and 7] are a family of methods to assess the
generalization performance of a model in order to decide
on the optimal amount of model complexity for a given
prediction method and training data. Model selection encom-
passes also aspects of feature subset selection and learning
algorithm hyper-parameter optimization. Regularization meth-
ods [1, Chs. 3 and 5] control the fit by adding a model
complexity penalty to the training error. The penalty is defined
to be large for functions that vary too rapidly over small
neighborhoods of the input space. Both feature subset selec-
tion and regularization are families of methods for restricting
the eligible solutions in the minimization problem of (2), and
therefore improve generalization error by reducing variance.
Model averaging methods [1, Chs. 8, 10, and 15] use a com-
mittee of models for prediction rather than a single model.
The majority of model averaging methods reduce the variance
of high-variance, low-bias models [1, Ch. 8].

Deciding on which papers to include in this survey is a
tall order because evolutionary learning is so distinct in its
use of a broad range of heuristics that have demonstrated
improvements in generalization when applied to GP. The above
grouping of SML methods into the classes of model selec-
tion, regularization, and model averaging serves as a good
base for organizing the literature review. Nonetheless this
categorization is not exhaustive.

We identified three additional families of methods tailored
to the inductive bias and heuristics of learning with GP. These
are: 1) data-centric methods that revolve around training data
sampling; 2) fitness functions for regression and classifica-
tion that use objectives other than squared loss or zero-one
loss; and 3) search operators and selection schemes. Since
regularization methods use complexity-penalty-augmented fit-
ness functions, and data resampling techniques are involved
in fitness evaluation we decided to merge all three classes
of regular, data-centric methods, and other fitness functions
into a super class named fitness evaluation. Data resampling
methods sit at the heart of validation-based model selection

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1031

Fig. 1. High-level view of research on GP generalization.

and model averaging methods like bagging, stochastic gradi-
ent boosting, and stacking in SML [1]. Nonetheless, contrary
to model selection where data resampling is used to estimate
generalization error, and contrary to model averaging where
data resampling is used to build different models of a commit-
tee, the research on data-centric methods considered in fitness
evaluation class deals with estimating training error during
the evolution of standalone predictors. Finally, the effect of
search operators and selection heuristics on generalization has
received very limited attention. We group these two research
themes together under the same class.

In summary, the overall taxonomy that we propose is com-
posed of four classes: 1) model selection; 2) fitness evaluation;
3) model averaging; and 4) search operators and selection
schemes.

C. Structure of This Paper

We begin by presenting the decomposition of the expected
generalization error into bias and variance terms for the case
of regression, and discuss its implications for GP. We pro-
ceed with a survey of GP research organized according to
the taxonomy that we devised previously. A separate section
is devoted to every major class of the taxonomy, which is
further structured into two sections. The first section reviews
work in an active way, synthesizing similar papers together to
present the main points of the idea. In the second section, we
present a critical discussion of the methods, summarizing their
strengths/weaknesses, and where applicable we draw attention
to topics for future research. The final section concludes this
paper, and provides recommendations for applying GP in a
production environment.

Fig. 1 presents a high-level view of research on GP gener-
alization, while Table I summarizes the surveyed papers under
each class of the proposed taxonomy.

II. DECOMPOSITION OF GENERALIZATION ERROR INTO

BIAS AND VARIANCE: IMPLICATIONS FOR GP

The bias-variance decomposition of the expected general-
ization error for the case of regression captures the tradeoff
between approximating a target function on the training data
and generalizing on new data. The analysis essentially high-
lights the need for model complexity control when learning

a prediction model using a finite training sample. This sec-
tion starts by presenting the error decomposition into bias
and variance terms, and then discusses its implications for
evolving a model using GP. The derivations follow those
of [8, Ch. 9, p. 333].

Let f (D)(x) be the output of the prediction model for input
x, and g(x) = y be the real-valued target evaluated at x.
The generalization error Etest(f (D)) using the squared loss is
defined as

Etest(f (D)) = Ex,y

[(
f (D)(x) − g(x)

)2
]

(3)

where Ex,y denotes the expected value with respect to the
joint probability distribution P(x, y). We have made explicit
the dependence of model f (D) on the training dataset D. We
can rid (3) of the dependence on a particular dataset by taking
the expectation with respect to all datasets. This produces the
expected generalization error ED[Etest(f (D))] for the prediction
model as follows:

ED

[
Etest

(
f (D)

)]
= ED

[
Ex,y

[(
f (D)(x) − g(x)

)2
]]

= Ex,y

[
ED

[(
f (D)(x) − g(x)

)2
]]

. (4)

The term ED[f (D)(x)] is the “average model,” which we denote
by f̄ (x). One can interpret f̄ (x) as follows: we sample B num-
ber of datasets D1, D2, . . . , DB using distribution P(x, y), and
apply the learning algorithm to each dataset to produce B mod-
els f1, f2, . . . , fB. We then estimate the average model for input
x by f̄ (x) ≈ (1/b)

∑B
b=1 fb(x). This implies that we are treating

f (x) as a random variable, with the randomness coming from
the dataset used to train f . f̄ (x) is the expected value of this
random variable for a particular input x. We can now rewrite
the expected generalization error in terms of the average model
as follows:

Ex,y

[
ED

[(
f (D)(x) − g(x)

)2
]]

= Ex,y

[
ED

[(
f (D)(x) − f̄ (x) + f̄ (x) − g(x)

)2
]]

= Ex,y

[
ED

[(
f (D)(x) − f̄ (x)

)2 + (
f̄ (x) − g(x)

)2

+ 2
(

f (D)(x) − f̄ (x)
)(

f̄ (x) − g(x)
)]]

. (5)

1032 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

TABLE I
TAXONOMY OF SML ELEMENTS AND OTHER GENERALIZATION-ENHANCING METHODS ADOPTED IN GP

By expanding the third term on the right-hand side of (5),
we get

ED

[(
f (D)(x) − f̄ (x)

)(
f̄ (x) − g(x)

)]

= (
f̄ (x) − g(x)

)
ED

[(
f (D)(x) − f̄ (x)

)]
. (6)

Since f̄ (x) and g(x) are constants with respect to D, the term
(f̄ (x)−g(x)) in (6) is a constant and factors out. The expected
value of ED[f (D)(x) − f̄ (x))] is then

ED

[(
f (D)(x) − f̄ (x)

)]
= ED

[
f (D)(x)

]
− ED

[
f̄ (x)

] = 0 (7)

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1033

which is equal to zero since in our earlier definition of aver-
age model we have that ED[f (D)(x)] = f̄ (x). Substituting (6)
and (7) into (5), we arrive at a decomposition of the expected
generalization error into bias and variance terms as follows:

Ex,y

[
ED

[(
f (D)(x) − g(x)

)2
]]

= Ex,y

⎡

⎢⎢⎢
⎣
ED

[(
f (D)(x) − f̄ (x)

)2
]

︸ ︷︷ ︸
variance

+ (
f̄ (x) − g(x)

)2

︸ ︷︷ ︸
bias

⎤

⎥⎥⎥
⎦

. (8)

The bias term measures the extent to which the hypothe-
sis set, represented at its best by f̄ (x), is biased away (i.e.,
differs) from the target function g. High bias results in under-
fitting, which is discussed to some extent for the case of GP
in [9]. The variance arises due to the fact that we have a finite
dataset for learning, and measures the extent to which model
f (D) changes when trained on different samples D drawn from
P(x, y). Overfitting is the result of a low-bias, high-variance
model.

An investigation of bias-variance tradeoff in GP is presented
in the work of [10]. Experiments based on univariate symbolic
regression problems showed that in cases of data abundance,
GP is able to approximate the target function to a high
degree of accuracy, provided that the expression-tree size is
unconstrained. During evolution the bias is asymptotically
approaching the optimal level (the level of noise in the tar-
get function), while the variance decreases as well. In cases
of limited training data sources, GP was empirically shown to
be a low-bias, high-variance method. During evolution larger
programs lead to a higher variance, yet the bias error term
decreases. The use of model averaging by means of bagging
[1, Sec. 8.7] was proposed for lowering variance. At the same
time, component predictors need to be evolved with the goal
of lowering bias. The maximum tree-size plays a major role
into this, with an increasing maximum tree-size having the
tendency to produce models with lower bias. The optimal max-
imum size is problem specific, and should depend upon the
dimensionality of the input space and the size of the train-
ing sample. In addition, pathologies (i.e., undefined output or
extreme output values for certain inputs) that may appear in
the output of evolved models need to be excluded from model
averaging. For that purpose a trimming process is suggested
in [10], which removes 10% of the models with highest and
lowest predictions given an input.

The following sections survey GP research based on the
taxonomy we proposed earlier. We start with model selection
methods for assessing the ability of a prediction method to
generalize, and therefore estimating the optimal amount of
model complexity for a given prediction method and training
sample.

III. MODEL SELECTION

One aspect of the general problem of inference from data
given a model is that of model specification [110]. It is par-
titioned into two components: 1) formulation of a set of
candidate models and 2) selection of a model to be used

for making inferences. GP models for regression and classi-
fication take the form of compositions of functions of one
or several explanatory variables. In formulating the set of
candidate models one needs to specify primitive functions
and terminals, model size, and construction constraints (i.e.,
closure, strong typing, and context-free grammar). The candi-
dates set consists of an enumeration of function compositions
given function and terminal sets subject to model size and
construction constraints.

The distinguishing characteristic of standard GP compared
to its sister SML methods is that it does not assume any
particular model form/structure. Given the building blocks of
function compositions using function and terminal sets, evo-
lutionary search samples models of variable structure and
complexity. Selecting the appropriate model structure along
with its parameterization (function composition with the asso-
ciated explanatory variables and constants) is a challenging
task due to the ambiguity caused by the multiplicity of solu-
tions that can be evolved to fit a finite training sample. The
decision on the right amount of model complexity, and there-
fore the selection of the output model from a GP run, needs
to be guided by assessing and comparing the generalization
performance of models sampled throughout evolution. SML
provides two approaches for estimating generalization error.
The first approach is to estimate the optimism inherent in the
training error and adjust this error accordingly. This gives rise
to analytical model selection methods defined for the class
of models that are linear in their parameters, for example,
Akaike information criterion (AIC), Bayesian information cri-
terion (BIC), structural risk minimization (SRM), and Mallows
Cp statistic, an introduction of which is given in [1, Ch. 7].
The second approach uses an independent validation dataset
to directly estimate generalization error.

We organize our review of model selection methods in GP
into two sections. The first section reviews analytical and
validation methods for estimating generalization error and
selecting a model as the output of a run. The second sec-
tion is devoted to feature subset selection methods. By using
only a subset of the original set of explanatory variables, is
it possible to increase the bias in order to reduce the vari-
ance of the predicted values [111], and hence may improve
generalization [1, Sec. 3.3].

A. Assessment of Generalization Performance

1) Analytical Methods: Analytical methods for estimating
generalization error are defined as a function of training error,
model complexity, and training sample size. GP researchers
have used these methods to select a model out of a set of
models sampled during evolution. AIC was used in the work
of [11], and was compared against final prediction error (FPE)
and predicted residual error sum of squares (PRESS). Models
selected with AIC were shown to either outperform or result in
similar generalization performance with models selected using
FPE or PRESS. The work of [12] evolved polynomial models,
and used the Mallows statistic to chose the number of poly-
nomial terms from a nondominated set of solutions at the end
of a run. The greedy heuristic of backward elimination was

1034 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

used to remove statistically insignificant terms from polyno-
mial models in the work of [13]. Backward elimination, which
iteratively removes insignificant terms based on student’s t-test
for statistical significance, was applied at every generation.

2) Validation Methods: Validation methods estimate the
error on an independent dataset Dval, and use this estimate
as a proxy for generalization error. Typically, a number of
programs sampled throughout evolution are evaluated on the
validation dataset at the end of a run (these are often the best-
of-generation programs), with the best one designated as the
output. Examples can be found in [18], [20], and [21]. The
work in [19] presented several variants of validation-based
model selection combined with Pareto-based sorting that takes
into account the classification error rate and the program size.

Validation methods can be used to halt an evolutionary run
when overfitting is detected, a process known as early stopping
in the neural networks literature. A number of early stopping
heuristics are investigated in [14], [16], and [17], which are
based on functions of training and validation error estimates.
A heuristic defined as a threshold on the Pearson correlation
coefficient calculated on training and validation error-series
was additionally used in financial modeling [15].

The work of [23] is a notable case that considered hyper-
parameter fine-tuning as part of model selection. A distinction
is made between fitting a model on training data and opti-
mizing the model of the learning process. The use of disjoint
training samples at every generation was recommended, where
each sample is further divided into a dataset used to optimize
the hyper-parameters of the evolutionary algorithm, and to a
dataset used to evaluate fitness. Models are selected among a
small set of best-of-generation candidates based on validation.

B. Feature Subset Selection

Feature subset selection [112] aims at retaining only a sub-
set of the original set of explanatory variables in a model. The
purpose is twofold. The first is prediction accuracy: by elim-
inating redundant or irrelevant variables from a model it is
possible to sacrifice some bias in order to lower the variance
of the prediction method [1]. Reducing the dimensionality of
the input space may allow a model to generalize better in case
of sparse datasets. The second is interpretation: we are often
interested in determining the subset of variables that exert the
strongest effects to the response variable. SML methods for
feature subset selection divide into three categories: 1) filter;
2) wrapper; and 3) embedded methods.

Filter subset selection uses statistical, information-theoretic,
and distance-based techniques to assign scores to either subsets
of features or individual features according to their relevance
to the response variable. Features are ranked based on score,
and a subset is then selected. A distinguishing characteristic
of filter methods is that they process the original feature set
independently of a given predictor.

Wrapper methods [111], [113] formulate feature subset
selection as a combinatorial optimization problem, and solve
it using a search strategy. This can take the form of either an
exact algorithm (i.e., leaps-and-bound in [1, Sec. 3.3.1]), or

greedy heuristics (i.e., forward selection and backward elim-
ination in [1, Sec. 3.3.2]), or meta heuristic search (a recent
survey on the application of evolutionary computation to fea-
ture selection is given in [114]). During search, the accuracy
of a trained predictor is used to assess the usefulness of a can-
didate subset, therefore the optimal subset is tightly coupled
with a certain class of predictor. Wrapper methods are gener-
ally computationally intensive since they require the repetitive
invocation of a learning algorithm each time a candidate solu-
tion is evaluated, and also need to account for estimation of
prediction accuracy using cross-validation [111].

Embedded methods perform feature subset selection during
the process of training a predictor. In GP, embedded feature
subset selection is based on an evolved model to jointly select
a subset and assess its usefulness, whereas wrapper subset
selection is based on an evolved model to select a subset and
a different predictor to assess its usefulness.

1) Embedded Feature Selection: Feature selection in GP is
regarded as the by-product of its variable-length representation
and evolutionary selection pressure as discussed in the works
of [24] and [31]–[33]. In this sense, GP is inherently an embed-
ded method of feature subset selection. In contrast to greedy
forward selection or backward elimination heuristics, evolu-
tion is an alternative heuristic that is largely unconstrained
in traversing the search space (i.e., add/remove multiple fea-
tures rather than one), and can re-evaluate previous feature
interactions as new interactions are tried [34].

The simplest method to rank individual features is to score
them based on their frequency of occurrence in leaf-nodes of
best-of-run programs. This practice was adopted in [33], [35],
and [36].

In [37], GP is used to evolve expression-trees for binary
classification, where features are selected from best-of-run
individuals and ranked according to their signal-to-noise ratios.
The work in [38] applied the filter methods of information gain
and relief-F to preprocess the feature set, and subsequently
used GP for embedded feature selection. A combination of
embedded feature selection and construction was presented
in [39].

Research reported in [40] and [41] applied GP to simul-
taneously select features and construct a classifier. Before
initializing each individual classifier the terminal set is popu-
lated with a random feature subset. Crossover is then restricted
between programs that were initialized with either the same
or similar terminal sets. In [41], an additional crossover oper-
ator is applied, in which the best crossover point is identified
by enumerating and evaluating all offspring expression-trees
resulting from different crossover points given a subtree from
the first parent. The fitness function in both [40] and [41]
rewards GP classifiers that correctly classify more samples
using fewer features.

Stage-wise embedded feature selection uses two stages of
independent GP runs to progressively fine-tune feature subsets
in high-dimensional problems [31], [34], [43]. Once features
are selected in the first stage, GP runs are invoked with a sub-
set of the original features. The work of [34] uses best-of-run
programs to select features in the first stage. In [43], the first
stage of runs are based on a Pareto-GP system that trades off

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1035

accuracy for structural complexity, and variable contribution
analysis is employed to select features from models that lie
in the knee of the Pareto-front. The study of [31] employed
the permutation-based feature importance measure of random
forests to rank features collected from best-of-run individu-
als. Finally, the work of [42] divides a run into two stages:
during the first stage, a subset of frequently occurring fea-
tures are extracted from the good-performing portion of the
current population, and new individuals are initialized using
said subset to replace the average-performing portion of the
population.

A number of works [32], [44] employed an adaptive muta-
tion operator to create bias toward certain features. Mutation
adaptation is based on normalized feature weights that yield
a probability distribution over features of a terminal set; the
distribution is used to draw terminal elements during random
subtree creation. In [32], feature weights are based on the
permutation-based feature ranking of random forests, whereas
in [44] feature weights are defined as a function of frequency
of occurrence in expression-trees and their respective
fitness.

2) Wrapper Feature Selection: Wrapper methods rely on
GP to search for feature subsets, but their performance is
assessed using a different predictor. The work of [28] evolves
programs for hierarchical subset construction. Expression-trees
are composed of elementary set operators (union, intersection,
and difference) as inner-nodes and randomly generated sub-
sets of features as leaf-nodes. The performance of naive Bayes
classifier is used as a wrapper. A similar program representa-
tion is presented in [29] that focused on problems with class
imbalance. The difference is that leaf-nodes are now repre-
sented by feature subsets resulting from the application of
filter methods of information gain, χ2, odds-ratio, and correla-
tion coefficient. A Gaussian naive Bayes classifier is used as a
wrapper. Finally, GP was used to evolve a hyper-heuristic that
controls the step-wise execution of greedy heuristics for adding
and deleting features in the work of [30]. A J48 classifier is
used as a wrapper.

3) Filter Feature Selection: Filter subset selection can be
applied to individual feature evaluation as well as to feature
subset evaluation [115]. For binary classification problems,
GP is used to evolve a program that maximizes the square
of Pearson correlation coefficient between the output of the
program and a function of the categorical class variable [24].
Program output captures the nonlinear interactions between a
number of features, therefore the correlation between the out-
put value and a function of the class variable is treated as
a proxy for the relevance of said feature subset. A similar
framework for removing redundant features that often result
in filter-based feature ranking methods is introduced in [25].
Given the complete set of features F, a single feature x ∈ F,
and a subset of features A ⊆ F\{x}, GP is required to evolve
a program using subset A that maximizes the square of the
Pearson correlation coefficient between x and the program out-
put. In case where the coefficient exceeds a given threshold,
feature x is discarded as redundant.

The study of [26] proposed the evolution of programs
that were rewarded for partitioning the input space of binary

classification problems in a way such that the probability of
one class is greater than the probability of the other in a certain
interval. This leads to a decrease in conditional entropy of the
set of two classes, which signifies that the subset of features
used in an evolved program are relevant for discriminating
between classes.

The work of [27] proposed a hybrid filter/wrapper approach.
The feature subset selection problem in binary classification
is formulated as a bi-objective optimization problem of max-
imizing subset relevance and minimizing subset cardinality,
and is tackled with a Pareto-based method. Subset relevance
is defined similarly to [24]. The best subset from the result-
ing Pareto-front maintained in between independent runs is
selected with wrapper evaluations using a variety of classifiers.

The research papers that were reviewed in this section stud-
ied the use of GP for feature subset selection in cases where a
number features in the original set were irrelevant or redundant
for predicting the response variable. The work in [116] took
a different approach and investigated the scalability of GP as
a function of the number of features in problems where all
of the features are relevant in the prediction. Results demon-
strated that in these cases GP does not scale well, with the
number of fitness evaluations required to reach high classifi-
cation accuracy in synthetic datasets increasing exponentially
with the number of features.

C. Critical Discussion

The assessment of generalization performance can be
involved into three main aspects of model selection in GP.
These are: 1) feature subset selection; 2) selection of an ulti-
mate model out of an evolutionary run (this includes the deci-
sion to halt a GP run); and 3) hyper-parameter optimization.
Methods for estimating and comparing generalization errors of
different GP models sampled throughout evolution is a way of
deciding upon the optimal amount of model complexity given
the training sample. First and foremost, one should distinguish
the problem of model selection from that of assessing the
prediction accuracy of the ultimately selected model on unseen
data. For that last purpose, practitioners need to set aside an
independent test set. The remaining data can be used for train-
ing and for performing model selection. For the purposes of
model selection, a single validation set or various methods of
sample reuse (i.e., cross-validation and bootstrapping) can be
employed.

1) Analytical and Validation Methods for Model Selection:
The use of analytical methods for assessing generalization
performance promises to free us from the necessity of holding-
out a validation dataset. These methods are therefore poten-
tially useful in situations where there is insufficient data to use
for validation. As an example, training and model selection of
polynomials were both performed using all the available data
organized in a single set in [12]. The application of analytical
model selection criteria has not received much attention from
the GP community. One aspect that warrants further investiga-
tion is how to best define model complexity, which is a term
factored in the analytical formulas. Complexity was set to the
expression-tree size in [11] and [61] for AIC and BIC, or to the

1036 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

number of multiplication and division nodes in [61] for SRM.
The effectiveness of other complexity measures (examples of
these can be found in the following section on regularization)
is as of yet undetermined.

On the other hand, in a data-rich scenario, validation-based
model selection should be preferred [1, p. 222]. It is easy
to implement and use, applies in almost any setting without
requiring specific metrics of model complexity, and results
in good generalization error estimates in practice. Given a
dataset of size N, a typical split is to use K = N/4 examples
for validation and the remaining N − K examples for train-
ing as suggested in [1, p. 222]. Nonetheless, as pointed out
in [1] and [112], it is difficult to give a general rule on how
much data is enough for each training and validation splits.
This primarily depends on the signal-to-noise ratio of the tar-
get function, the complexity of the candidate models, and the
size N relative to the dimensionality of the input space X.

Furthermore, choosing the data points to use for training
and for validation may introduce sampling bias. N-fold or
leave-one-out cross-validation [1, p. 241] avoid this issue, but
their application to GP is not straightforward as discussed
in [16]. Cross-validation relies on the modeling method pro-
ducing models of similar form for each of the succession of
N partitions, and is commonly used in methods where suc-
cessive models for each fold differ relatively slightly. This is
not the case of GP, where it is possible that the N models
are very different from each other in structure, in constants,
and in the independent variables used. One way to deal with
this randomness is to average a number of GP runs for each
successive partition, but at the expense of additional compu-
tational cost. Therefore, for GP, the division of the original
dataset into disjoint, fixed, train-validation-test partitions is
generally more practical. Data points for each partition should
be drawn uniform-randomly.

An additional use of validation methods is to optimize the
hyper-parameters of the evolutionary algorithm. Examples of
GP system parameters include elements of the primitive func-
tion and terminal sets, maximum model size, probability of
the application of variation operators, and constraints on syn-
tax/semantics. This aspect of model selection in GP is largely
neglected in practice, when at the same time hyper-parameter
fine-tuning constitutes an integral part of model induction
in SML. There is evidence that evolutionary systems are on
average insusceptible to small changes of the probabilities of
variation operator application, however, optimally deciding on
maximum model size and constituent elements of the func-
tion set may turn to be advantageous in certain problems with
limited data sources.

The main drawback of validation is the reduction in size of
the training set, and as previously mentioned this method is
most successful in data-rich domains. Another drawback con-
cerns an improper use of validation. Practice has shown that
if the validation set is used to decide on only one or a few
parameters, the estimates based on a properly sized valida-
tion set will be reliable. The more choices made based on the
same validation set, the more “contaminated” the validation set
becomes and the less reliable its estimates will be. The number
of choices here refer either to the number of parameters that

are fine-tuned or the number of times the same validation set
was used to affect the learning process during a run. When a
large number of choices need to be made then multiple disjoint
validation sets are required.

The final remark concerns early stopping heuris-
tics [14], [16], [17]. These are useful in cases where
fitness evaluation is very expensive and there is a need to
reduce run time. In all other problems, allowing evolution to
proceed until convergence is preferred, along with the use
of validation at the end of a run for selecting the optimal
level of model complexity given the training sample. The
parameters that govern early stopping heuristics appear to be
problem-dependent [17], and it is seldom known in advance
which heuristic and parameterization will perform the best
for any given problem. Run termination triggered by the
value of Pearson correlation coefficient between training and
validation error series appeared to be robust across a wide
range of problems and GP system setups [14], [15], [17].

2) Feature Subset Selection: The vast majority of wrapper
methods that use evolutionary search employ a direct encoding
of solutions, which takes the form of a bit-string representa-
tion [114]. That is, for P features, solutions are represented
using P bits, where each bit indicates whether a feature is
present (1) or absent (0). This results in a combinatorial search
space of size 2P. GP research [28], [29] investigated the use of
indirect encodings, where the solution is represented by a pro-
gram that hierarchically constructs a subset of features using
function compositions of elementary set operations. Another
indirect encoding was presented in [30] where GP evolved a
hyper-heuristic to construct a solution in a stage-wise manner.
It may be the case that such indirect encodings offer a com-
pressed representation for search, which is potentially more
evolvable than the direct encoding of solutions for very high-
dimensional problems. The use of GP indirect encoding in
wrapper search and a comparison against direct encoding is a
potential area for further research, especially in cases where
the original feature set is of very high cardinality.

The decision between the use of filter, wrapper, or embed-
ded subset selection methods needs to take into account the
cardinality P of the original feature set relative to the number
of examples N. Sophisticated wrapper and embedded methods
obtain better predictive accuracy than filter methods in prob-
lems where P
 N [111], and GP used either for wrapper or
embedded search should be no exception. On the other hand,
for problems where P � N or problems with small N, iterated
overuse of cross-validated predictor accuracy estimates may be
overly optimistic of the performance of certain subset of fea-
tures on unseen data. In cases where the number of examples
is small relative to the number of features then simpler filter
selection methods (i.e., methods that consider simple types of
relationships like Person correlation coefficient) may be nec-
essary to prevent overfitting [112]. Another possible solution
is to preprocess the feature set with a filter approach before
passing it to GP as was done in the work of [38]. Alternatively,
a greedy heuristic search like step-wise forward selection with
a simple linear wrapper [112] can be used to preprocess the
feature set before running GP. Step-wise forward selection
consists in a far more constrained search than GP, and should

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1037

result in lower variance. One way to apply embedded feature
selection with GP in problems where P � N is to adopt a
stage-wise evolution of models as in [34]. In order to solve a
binary classification problem with 7129 features and 60 exam-
ples [34], the first-stage GP runs enabled to trim the original
feature set down to 404 features, and the second-stage single-
generation runs limited the expression-tree depth to contain
no functions or a single IF statement. Yet another way is to
introduce evolutionary pressure toward the use of fewer fea-
tures using a scalar multiobjective fitness function as in the
work of [40] and [41], or a Pareto-based multiobjective fitness
function as in [27].

The use of GP with embedded feature selection has received
considerable attention. The work of [32] demonstrated that
best-of-run GP programs often contain features that do not
contribute to fitness even when bloat control measures are
used. The permutation-based variable importance scheme of
random forests was shown to be more useful in identifying
relevant features in GP programs. Yet another study reported
in [36] showed that the simple frequency-of-occurrence-based
scoring performed better than permutation-based scoring in
selecting a number of features for use with other classifiers.
There is a notable difference in the maximum allowed tree
depth of 17 in [32] versus 8 in [36], which suggests that
frequency-of-occurrence-based scoring may be sensitive to this
parameter. In any case, it was shown that generalization of
GP benefits from adapting the probability of selecting fea-
tures during the application of mutation operator using either
the frequency-of-occurrence [44] or the permutation-based
variable importance analysis [32].

The last remark concerns the inherent tendency of GP to use
subsets with relatively low cardinality as shown in [27]. This
is undoubtedly a desirable property of a feature selection algo-
rithm in problems where there exists a subset of features that
enables better generalization than the original set of features.
By focusing on the smallest possible subsets evolution implic-
itly addresses the need to eliminate irrelevant and redundant
features. Nevertheless, this constitutes a potential weakness in
cases of high-dimensional problems with large subsets of rele-
vant features. As pointed out in [27] one should ensure that the
optimum size of the subset is not beyond the exploration capa-
bility of GP. Toward this end, a dynamic depth limit is used
that allowed to increase only if a resulting offspring fulfills cer-
tain criteria on training and validation fitness compared to the
current best solution. With the proposed method the evolution
of depth was controlled, however for problems with very large
subsets of useful features very deep expression-trees would be
required.

The following section deals with the class of fitness evalu-
ation of the proposed taxonomy. This primarily encompasses
the use of regularization in GP, as well as additional heuris-
tics in the form of fitness functions, and training data sampling
strategies.

IV. FITNESS EVALUATION

One way in which SML methods address the ambiguity
caused by the multiplicity of solutions to the minimization

problem of (2) is to restrict the eligible solutions to a smaller
set of functions. In general, the constraints imposed can be
described as complexity restrictions of some form. For the
case of GP, these restrictions can be built into the learning
method itself either explicitly (i.e., setting the maximum model
size, selecting certain elements for the function set, and use
of syntax constraints by means of strong typing/grammar), or
implicitly by means of a fitness function that exerts bias toward
simpler solutions. The augmentation of fitness functions with
complexity penalties is the focus of regularization, and forms
the subject of the first section.

Furthermore, evolution is unique in orchestrating various
heuristics for solving the problem of constructing a function
composition that maximizes a measure of goodness-of-fit cal-
culated on some finite training sample. The second section
deals with such heuristics that are embedded in the fitness
evaluation process of individuals. We focus on fitness func-
tions (other than regularized fitness functions), and training
data sampling strategies, which were empirically demonstrated
to improve the ability of GP to generalize.

A. Regularization

Regularization [1, Chs. 3 and 5] are a family of methods
for controlling variance. They constrain the space of eligible
solutions by adding a model complexity penalty to the loss
function. The penalty function expresses a prior belief that
the input–output mapping we search for exhibits a smooth
behavior in the sense that similar inputs produce similar out-
puts. The general formulation of regularization in GP takes the
form of minimizing an augmented fitness function by adding
a regularization term as follows:

LR(f) = LS(f) + λ�(f) (9)

where LR(·) is the regularized fitness function, LS(·) is the
standard loss function (i.e., squared loss to be minimized for
real-valued target functions), and �(·) denotes the regularizing
function (or regularizer) which is a measure of complexity of f .
The regularizing term represents a model complexity penalty
function, the influence of which on function f is controlled by
the regularization parameter λ.

Regularizing functions � in GP are constructed for seman-
tic complexity that characterizes the smoothness of a response
surface, and syntactic complexity that characterizes the size of
a program. The vast majority of regularized fitness functions
based on semantic complexity were used to evolve real-valued
target functions. Regularized fitness functions that incorpo-
rate some measure of syntactic complexity were applied to
evolve real-valued target functions is the works of [13], [45],
[49], [54], [56], [60], and [61], and categorical-valued target
functions in the works of [19], [51]–[53], [55], [58], and [60].

1) Regularizers Based on Semantic Complexity: The first
category of papers uses an augmented fitness function that
takes the form of a scalar combination of a measure of
goodness-of-fit and a regularizer. A regularizer based on
curvature (second-order Tikhonov functional) of evolved poly-
nomial models is applied in [13] and [45]. The work of [47]
also used curvature as a regularizer; however, programs in

1038 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

this case are composed of protected arithmetic operators. In
the work of [48], the first derivative of an evolved function
along with the curve length of the first derivative were used
as regularizers, while the work of [50] applied a regularizer
based on an approximation of the VC-dimension.

The second category of papers uses Pareto-based
multiobjective optimization between a goodness-of-fit
objective and a regularizer objective. A number of different
regularizers based on zeroth-order, first-order, and second-
order derivatives of an evolved function with respect to
the independent variable are studied in the work of [46].
A method of numerical differentiation based on Lagrange
interpolation was used to compute derivatives. The analytic
quotient operator replaced protected division to ensure
that pathologies (i.e., undefined output or extreme output
values for certain inputs) in an evolved function’s output are
eliminated. A regularizer based on the order of nonlinearity
was introduced in the work of [49]. Order of nonlinearity
is defined as the minimum degree of the best-fit Chebyshev
polynomial approximating an evolved program with a certain
precision.

2) Regularizers Based on Syntactic Complexity: Two of the
earliest studies about the effect of program size on general-
ization are presented in [57] and [58]. Programs that took the
form of decision-trees were evolved to control an agent for the
game of Ms. Pacman. Experiments demonstrated a relation-
ship between size and generalization, with smaller programs
performing better than larger ones. The study in [58] similarly
showed a positive correlation between the size of classification
programs and the generalization error.

Regularized fitness functions that penalized program size
measured in terms of tree-node count were reported in
[52] and [55]. In those studies, the regularization parameter λ

is kept constant throughout evolution. In the work of [56], this
parameter is dynamically adapted using the method of covari-
ant parsimony pressure. A penalty function of expression-tree
size and depth is adopted in [59], while Bojarczuk et al. [52]
used a regularizer as a function of expression-tree size and
maximum-allowed size.

A number of studies have applied Pareto-based
multiobjective optimization of goodness-of-fit and pro-
gram size [19], [46], [51], [53], [54]. The work of [49] used
expressional complexity (total number of tree-nodes in all
constituent subtrees of a program) as syntactic complexity
objective in Pareto-based optimization.

Fitness functions based on minimum description length
(MDL) [1, Sec. 7.8] encourage syntactic simplicity of evolved
programs. An MDL-based fitness function was used in [60] for
evolving decision-trees, and in [59] for evolving neural trees.
MDL was additionally combined with a curvature-based com-
plexity penalty in the works of [13] and [45] for evolving
polynomial models.

Finally, the previous research [61] studied symbolic regres-
sion using loss functions based on the methods of AIC, BIC,
and SRM. For the cases of AIC and BIC, model complex-
ity was measured in terms of expression-tree size, while for
the case of SRM model complexity was set to the number of
multiplication and division nodes of an expression-tree. It was

empirically shown that SRM outperformed both AIC and BIC
fitness functions.

B. Other Fitness Functions

A fundamental feature of evolutionary learning is that it
is based on a gradient-free optimization process. This alle-
viates the need for fitness functions and evolved function
compositions that are continuous and differentiable as is the
requirement for models trained end-to-end with gradient-based
optimization methods. There exist a number of alternative fit-
ness functions to the regularized ones that implicitly restrict
the size of the search space by exerting pressure toward certain
solutions. These fitness functions have the potential to improve
generalization.

A number of variations on an adaptive weighted average
defined as (1/N)

∑N
i=1 wiL(f (xi), yi) were proposed as fit-

ness functions in [20], [62], [63], [75], and [76]. Weight
wi reflects the influence of individual loss L(f (xi), yi) to
the weighted average calculated over the training sample
{(xi, yi)}N

i=1. In [62], a weight w is dependent on the level
of ruggedness of evolved f around input x. In [63], a weight
quantifies the importance of an input point x relative to rest of
the input points in the training sample. Different measures of
sampling density around individual training examples are used
as weights, which assign higher influence to sparse areas of
the input space. Given input x and its q nearest neighbors in
the training sample (using a fractional or Euclidean distance
metric), measures of density are defined based on proximity,
surrounding, remoteness, and nonlinear deviation. The study
of [75] uses weights to increase the influence of misclassified
training examples, while the work of [20] proposed a sharing
method that adaptively weighs the loss on individual examples
according to the performance of the rest of the population on
said examples. The fitness function in [76], defined for binary
classification problems with a decision boundary f (x) = 0,
weighs the contribution of misclassifications according to the
hyper-volume of the portion of a kernel function that falls on
the wrong side of the decision surface.

The studies of [64] and [65] applied bootstrap-
ping [1, Sec. 7.11] to estimate the standard deviation of
a statistic that measures goodness-of-fit, and factored this
estimate into a fitness function. The fitness function in [64]
takes the form of a weighted average between bootstrap
standard deviation of Canberra distance between target and
predicted values, and Canberra distance on the original train-
ing sample. The work of [65] uses the product of bootstrap
standard deviation of classification error rate by classification
error rate on the original training sample.

A number of fitness functions for classification were devised
to address poor prediction performance on unseen data that
often results when evolving discriminant functions with fixed
thresholds on their output values to determine class bound-
aries [117]. A fitness function for multiclass classification
problems that measures the separability of probability distri-
butions of program-outputs for different classes is presented
in [68], and is additionally applied to binary decomposition

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1039

of the multiclass problem in [69], and to unbalanced classifi-
cation problems in [70]. A similar fitness objective defined as
the intersection area resulting by the projection of program-
output distributions for different classes is introduced in [71].
Finally, a misclassification cost ratio defined as a function of
false positives and false negatives is used as the basis of a
method to dynamically determine the threshold representing
class boundaries in the work of [72].

Additional fitness functions for classification problems
are based on approximations of area under curve (AUC)
measure [70], [73], [74], [98] and maximum-margin lin-
ear discriminants [67]. For regression problems, Pareto-based
multiobjective optimization is applied in [54] with objectives
defined for root mean squared error, variance of residuals
y − f (x), and program size.

The aforementioned fitness functions are general in the
sense that they can be applied to arbitrary regression and
classification problem domains. Examples of fitness functions
developed for certain application areas are as follows. Medical
classification was tackled with a fitness function based on
sensitivity, specificity, and program size in [52], while the evo-
lution of financial trading rules used a fitness function defined
as a weighted sum of daily mean return and p-value generated
from a statistical hypothesis test named superior predictive
ability in the work of [18]. For object detection, a fitness func-
tion based on detection rate, false alarm rate, false alarm area,
and program size is reported in [66].

C. Data Sampling Methods

Early work on GP generalization showed that repeatedly
exposing a population to a fixed training sample for a large
number of generations can result in solutions with poor
generalization [3]. Dynamic sampling of training examples
as opposed to a fixed static training sample can improve
generalization by reducing variance.

Given a set of labeled examples, the training sample can
be generated in different ways. The first approach is to down-
sample the original set of examples uniform-randomly (with or
without replacement) at predefined intervals throughout evolu-
tion. The second approach is to perform adaptive sampling. We
distinguish between two major classes of methods of adaptive
sampling: 1) down-sampling based on difficulty of a train-
ing example where the sample size is kept fixed throughout
a run and 2) incremental or layered sampling where an ini-
tial subsample monotonically increases throughout a run until
it accommodates every training example in the original set.
Methods for adaptive sampling based on difficulty can be
further divided into those based on single-population evolu-
tion, and those based on competitive coevolution of training
examples versus programs.

The works of [55], [77], and [80] used a random sample
of training examples S < N to control overfitting in classifi-
cation problems. Fitness was evaluated on a single randomly
drawn example [79], or a version that periodically balances
the random selection of a simple example with the use of the
complete training sample [81]. Randomization of the training

sample individually for each program in each generation was
investigated in [20].

Dynamic subset selection introduced in [78] uses the
performance of the current GP population to select a new
subset of difficult examples (examples which are frequently
misclassified) and infrequent examples (the age of an exam-
ple relates to the number of generations since it was last
selected) at every generation. Hierarchical dynamic subset
selection, developed to improve training time in the case
of large datasets, was applied to anomaly detection in [82].
Historical subset selection [78] uses a number GP runs to
establish some measure of the difficulty of each training exam-
ple. Over the course of several runs the cases misclassified by
the best population member are recorded, and make up the
subset used in subsequent GP runs (the subset remains fixed
after its initial selection). In the work of [85], training exam-
ples are associated with a score that is incremented each time
an example is misclassified and decremented otherwise (higher
score means “fitter” example). Upon every individual fitness
evaluation a two-member score-based tournament selection
over the complete training sample is applied to generate a
subsample of examples.

Competitive coevolution of a population of programs ver-
sus a population of training examples is presented in the works
of [20], [83], and [84]. For regression problems, training sets
of size 20 bred with one-point crossover and Gaussian muta-
tion in [20], while the work in [83] used a single example that
was perturbed using Gaussian mutation. The work of [84] uses
a subsample of eight examples, which is encoded as an array
of indexes to the full training set. Each index is allowed to
repeatedly sample a point if necessary.

One form of incremental learning in GP uses a layered train-
ing strategy based on a sequence of nested training samples of
increasing size for each layer [59], [87], [88] until the com-
plete set of training examples is made of use. The training
process in [87] starts with a basic set of training examples,
and an increment in the number of examples is triggered when
enough hits are scored for a particular training set configura-
tion. The work of [59] proposed the method of incremental
data inheritance, where each individual program in a popula-
tion is assigned its own variable-length training sample that is
initialized at a size of 20 and grows by an arbitrary increment
of 6 additional examples per generation. Training samples are
inherited and recombined using a variant of uniform crossover.
The study in [88] addressed the problem of optimally choosing
the size and composition of initial sample, which was based
on the Kullback–Leibler divergence between a variable-sized
sample and the complete set of training examples. Evolution
proceeds, and a mechanism of overfitting detection triggers
sample augmentation, which follows a geometric progression.

A different approach to layered learning is presented in [86]
based on a method that enables a gradual complexifica-
tion of training samples of fixed size as opposed to gradual
sample-size augmentation used in research work discussed
previously [59], [87], [88]. A measure of complexity of a train-
ing sample based on the variance of program outputs controls
a transformation of training samples of increasing complexity.
The population of evolved programs is exposed to a training

1040 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

sample until overfitting is detected or a generation limit is
reached at which point a consecutive training sample is used.

D. Critical Discussion

1) Regularization: Regularized fitness functions are
multiobjective. The scalar weighted average of (9) is easier
to fine-tune if the values for the objectives of goodness-of-fit
and regularizer are of same scale, therefore some form of
normalization is necessary. The use of validation to optimize
regularization parameter λ is recommended, which increases
the number of runs according to the number of values for
λ that need to be validated. On the contrary Pareto-based
optimization uses the raw objectives’ values, and model
selection can be directly performed among models composing
the Pareto-front.

For models evolved without any constraints on their func-
tional form, computing the value of a semantic complexity
penalty based on Tikhonov functional [46], [47], curve length
of first derivative [48], order of nonlinearity [49], and VC-
dimension [50] adds an additional cost to fitness evaluation. In
the case of [48], only a subset of the population that performed
well on the nonregularized version of the fitness function were
chosen to be evaluated with the regularized fitness function
due to high computational cost of computing the curve length
of first derivative. For arbitrary model forms, the use of regu-
larizers like Tikhonov functional [46], [47] or curve length of
first derivative [48] require that the evolved programs represent
differentiable function compositions, therefore the function
sets need to be constrained to certain primitives. The use of
Tikhonov regularization in [46] requires numerical differenti-
ation, whereas Tikhonov regularization of polynomial models
in [45] is based on partial derivatives that are computed analyt-
ically, and it is faster. Finally, syntactic regularizers defined as
functions of program size and/or depth [51], [56], [58] yield
virtually no extra computational cost, however their impact
on generalization is not consistent as will be discussed later
in this paper.

The semantic regularizer based on order of nonlinearity [49]
does not always outperform a syntactic regularizer based
on expressional complexity [49]. Regularization based on a
combination of Tikhonov functional and program size consis-
tently outperforms regularization based solely on program size
in [46]. Furthermore, regularizers based on VC-dimension [50]
and curve length of first derivative [48] are also shown to con-
sistently improve generalization compared to nonregularized
fitness functions.

The evolution of polynomial models [45] is amenable to
a composite learning process that applies GP-based variation
operators for evolving the hierarchical structure of the poly-
nomial model, followed by regularized least-squares fitting of
the coefficients of polynomial terms. In addition, polynomial
models are amenable to analytical model selection using MDL,
where the number of effective model parameters is set to the
number of polynomial terms [45]. This waives the requirement
of a hold-out set for validation, and is advantageous in cases of
small datasets. On the other hand, polynomials are often lim-
ited by their global nature meaning that tuning the coefficients

to achieve a functional form in one region of the input space
can cause the function to vary wildly in remote regions. In
addition, as shown in [1, Ch. 5], erratic polynomial fits often
result near the input space boundaries, and extrapolation can
be problematic.

The relationship between program size and generalization
has received considerable attention. In GP representations
of decision trees, smaller size is seen with better general-
ization [57], [59], [60]. In symbolic regression results are
inconsistent. The works of [51], [56], and [58] reported better
generalization with smaller expression-trees, the works of [54],
[55], [103], [108], and [118]–[121] showed weak relation-
ship between size and generalization, and finally the work
of [122] reported that good-generalizing classifiers were not
parsimonious. There is certainly a relationship between pro-
gram representation, size, and generalization, albeit a complex,
not well-understood one. The MDL principle is supporting the
fact that smaller programs should generalize better.

2) Other Fitness Functions: Multiobjective fitness func-
tions that are based on scalar weighted averages of different
objectives (i.e., [18] and [64]) require fine-tuning of the mix-
ing coefficients to yield the right tradeoff given a data sample,
which should be performed by means of validation. The cost of
model selection in terms of independent runs is proportionate
to coefficients configurations that need to be validated. On the
contrary, Pareto-based multiobjective methods (i.e., [54]) are
free of mixing coefficients and can work with raw objectives’
values.

Bootstrapping is applied to estimate the standard deviation
of a goodness-of-fit statistic in [64] and [65], and to approxi-
mate the sampling distribution of a test statistic in [18]. This
process results in a significant computation overhead, there-
fore these methods may be more suitable for cases of limited
data sources.

Simple functions of the elements of a confusion matrix (i.e.,
sensitivity and specificity in [52] and true positive rate and
true negative rate in [66]) are fast to compute and may form
better alternatives to classification error rate (or classification
accuracy) in cost-sensitive classification problems like medi-
cal diagnosis [52] or object detection [66]. The class of fitness
functions based on approximations of the AUC are invari-
ant to unbalanced class distributions, and outperform fitness
functions based on standard and weighted variants of clas-
sification accuracy [70]. They are also suitable when GP is
applied to fuse pretrained classifiers [74], [98]. Approximating
the AUC requires that the true positive rate and false posi-
tive rate are estimated at multiple thresholds on the output
value of an evolved discriminant function [70]. For that pur-
pose, each classifier is evaluated at every threshold value,
and there exists a tradeoff between the accuracy of approx-
imation of the receiver operator characteristic (ROC) curve
and training time. A faster alternative estimator of AUC that
does not require construction of ROC curve is based on the
Wilcoxon–Mann–Whitney statistic, and was applied in the
works of [70] and [73].

The fitness function that measures separability between
the program-output probability distributions for different
classes [68] is among the state-of-the-art in the evolution of

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1041

real-valued discriminant functions for multicategory classifi-
cation. It is also shown to be a good alternative to AUC-based
fitness function in class imbalance problems [70].

The fitness function developed for problems with sparse data
in certain parts of the input space [63] requires that individ-
ual training example weights are computed at a preprocessing
step before program evolution begins. A parameter that needs
to be fine-tuned by means of validation is the number of neigh-
bors for computing the different measures of sampling density
around individual training examples (Vladislavleva et al. [63]
proposed to set this to P+1 for a P-dimensional input space).
Weights may also be used to compress the original training
sample to a smaller sample of similar information content,
and therefore reduce training times.

Stepwise adaptation of weights [75] (with weights reflecting
the difficulty of misclassifying individual examples) requires
two parameters to be fine-tuned using validation: the first is
the weight update interval and the second is the magnitude
of weight updates. The method incurs an additional com-
putational cost having to re-evaluate the population after an
update of weights. The fitness function based on vicinal risk
minimization [76] requires fine-tuning of parameters for the
widths of the kernel functions, and may be expensive for
large datasets. This cost comes with an improvement in gen-
eralization compared to the discrete fitness function based on
zero-one loss.

3) Data Sampling Methods: Strategies for uniform-random
or adaptive downsampling of the original training sample
reduce the computational cost of GP runs (i.e., [78] and [82]),
and is also possible to yield generalization gains (i.e., [20],
[55], [77], [79]–[81], and [84]). Gradual augmentation of train-
ing sample is positively affecting the speed of the training
process [59], [88], but there is limited evidence for its impact
on generalization [87], [88].

When deciding on the use of a downsampling method one
needs to take into account the additional parameters intro-
duced and the need to fine-tune these in the model selection
sense. This will inevitably increase the number of indepen-
dent GP runs required and necessitates the use of validation
as discussed in Section III-C, which may be prohibitive in
cases of limited data sources. In general, the more parameters
that need to be fine-tuned the greater the computational over-
head. Specifically, the use of dynamic subset selection [78]
has three parameters (subsample size, difficulty exponent, and
age exponent), while uniform-random downsampling has one
parameter (subsample size). Reducing the sample size to a
single example [79], [81] requires no parameters; however,
this sampling technique results in fitness evaluations that are
noisy. This may compromise selection, and therefore conver-
gence of GP. In addition, the number of fitness evaluations
required to generalize may be more difficult to determine as
opposed to runs with uniform-random subsamples of larger
size. The most recent study on variants of uniform-random
downsampling in [81] demonstrated that the training strategy
of alternating between the use of a single random example
and the use of the complete training sample is consecutive
generations resulted in better generalization than training with
a single random example at every generation.

Methods for incremental learning are in general more
difficult to fine-tune than uniform-random or adaptive down-
sampling methods. Common to the methods of [86] and [88]
is an overfitting detection mechanism that triggers a transition
to a consecutive training sample. It is based on a heuristic
that uses validation data to compare the performance of pro-
grams sampled in successive generations. Care must be taken
when the same validation set is used multiple times through-
out a run, as this may bias the error estimates. In addition,
the selection of values for the number of layers, and the trans-
formation exponent is required in [86]. The method of [88] is
easier to fine-tune, requiring only a stopping criterion for each
layer.

Coevolution is a more complex system than single-
population evolution, thus it is expected to require more effort
to fine-tune its configuration. Nonetheless, for the case of
symbolic regression there is some evidence that competitive
coevolution [20], [83], [84] is a good alternative to the schemes
of uniform-random downsampling and dynamic subset selec-
tion. More research is required to ascertain the conditions that
make one class of methods preferable over the other.

As a final remark, methods of adaptive downsampling based
solely on difficulty of individual examples may be susceptible
to overfitting in cases where there is high level of noise or out-
liers in the training examples, and programs are evolved with
fitness functions that are not robust to noise/outliers (i.e., mean
squared error for regression). In cases of competitive coevo-
lution, the work of [85] proposed a two-member tournament
selection of training examples to counteract the tendency of
fitness-proportional selection to quickly skew the distribution
of selected training examples toward fitter examples. The use
of the age heuristic in dynamic subset selection [78] plays a
similar role in sampling more uniformly throughout the course
of evolution. The issues of noise and overfitting in adaptive
downsampling based on difficulty warrants more investigation.

V. MODEL AVERAGING

Model averaging are a class methods that build a compos-
ite predictor by combining multiple component predictors [1].
We distinguish between two dominant classes of methods for
constructing component predictors. Central to both classes
is the notion that component predictors must be diverse in
their construction mechanism. The aim is to construct accurate
component models, which are uncorrelated in their predictions.

A. Parallel Training of Component Models

In the first category, component models are built in paral-
lel using a perturb-and-combine principle. Every component
model may be trained on different bootstrap-sampled ver-
sions of the training data, or by means of perturbations in
the construction method (i.e., available subsets of features and
hyper-parameter configuration). This kind of perturbation in
data or construction method causes different models to be built
if the class of models are of high variance. The resulting mod-
els are then combined into a single predictor via some form
of voting for classification, or some form of averaging for
regression.

1042 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

Bagging is a technique that works especially well for reduc-
ing the variance of low-bias high-variance models evolved
by GP. By using an average model for making predictions,
the error contribution due to variance is effectively elimi-
nated, and the remainder error contribution is due to bias.
Bagging uses bootstrap training samples to train different
component models. Predictions are then combined using
a simple unweighted average for regression, or a simple
majority vote for classification (ties are broken arbitrar-
ily). Examples of bagging GP predictors can be found in
[10] and [89]–[93]. Despite bagging, a number of different
model averaging/voting schemes that do not require train-
ing of the model combination scheme are compared in the
works of [92], [94], and [95] (more details on these are given
in Table I).

The model combination scheme can be itself trained. The
perceptron learning rule was used to fit the weights in the lin-
ear combination of models in [95]. The work of [96] applied
Bayesian model averaging, with weights proportional to the
posterior probability of each component model. This was com-
pared against least-squares fitting of weights in the linear
combination of models. Evolution of Bayesian networks for
selection and combination of GP models was proposed for
classification problems in [97].

More complex combination schemes can be evolved in
the form of expression-trees that use the outputs of pre-
trained component models as leaf-nodes. Decision trees and
multilayer perceptrons are fused by means of GP in [98], while
Langdon and Buxton [74] evolved expressions to fuse linear
discriminants or naive Bayes classifiers. In [99], GP is used
to evolve a Pareto-front of component classifiers that trade-
off classification accuracies between minority and majority
classes. GP was subsequently applied to evolve a combination
rule using classifiers from the Pareto-front.

Component models that are built in parallel do not solely
rely on data perturbation by means of bootstrapping to de-
correlate component predictions. Diversity can be promoted
by means of negative correlation learning and pairwise fail-
ure crediting in a Pareto-based fitness function [123], island
architectures [124], fitness sharing [96], cooperative coevolu-
tion [125], and edit-distance between expression-trees [92].

B. Sequential Training of Component Models

The second class of methods for constructing component
predictors comes by the name of boosting. A sequence of com-
ponent models { ft}T

t=1 evolves over discrete time t such that
each successive model concentrates on those training examples
that are “difficult” for the previous models in the sequence. A
weight is associated with each training example. During train-
ing of each ft in the sequence, weights are increased for those
examples that are misclassified by ft−1 (in classification prob-
lems [100]) or have large absolute deviation from a target value
using ft−1 (in regression problems [89], [101]). Difficult exam-
ples are assigned an ever-increasing influence with additional
boosting iterations.

Boosting of GP models is realized in two ways. The
first way is to normalize the weights to create a probability

distribution over training examples. This distribution can be
used to sample examples with replacement at each boost-
ing iteration as in the work of [89]. The outputs of com-
ponent models are combined using the geometric median
weighted by confidence coefficients. The second way is to
use the original training sample [101] or to perform uniform-
random downsampling (with replacement) [91], [100], along
with a fitness function defined as a weighted average of
losses on individual examples, with weights reflecting diffi-
culty as described above. The outputs of component models
in [101] are combined using the geometric median as in [89],
whereas a weighted majority vote that gives higher influence
to more accurate component models in the sequence is used
in [91] and [100]. A GP-based parallel implementation of
AdaBoost.M1 that deals with binary classification problems
is reported in [100], whereas the work of [91] implements
a parallel version of AdaBoost.M2 to tackle multicategory
classification problems.

C. Critical Discussion

Model averaging methods improve the generalization of
low-bias high-variance GP models, but at the expense of
additional computation required to train multiple compo-
nent models. Bagging or boosting of GP models may take
advantage of the inherent randomness in the construction of
models to produce diverse models in the course of indepen-
dent runs, or select diverse models from a Pareto-front of a
single run.

Bagging impacts the performance of highly nonlinear mod-
els the most, while it does not affect linear models [1].
Therefore, one should refrain from placing stringent model
complexity restrictions when using bagging; a view that is
also supported by Keijzer and Babovic [10]. When comparing
bagging to boosting GP models, generalization performance
is often problem-specific with both methods producing com-
petitive solutions. In terms of training time, bagging is
faster since component models can be trained in paral-
lel as opposed to boosting where models are trained in
sequence.

Model selection deals with the optimization of additional
parameters for the number of component models in bag-
ging or iterations in boosting, and for the maximum size
of expression-trees. Another aspect of model selection in
committees of models is the optimal pruning by means of
removing component models with a goal of improving speed
of execution without sacrificing generalization, which was
investigated in [126]. Bayesian model averaging, applied to
GP in [96], is an alternative approach that can lift the ambi-
guity in regard to which component models to include in a
committee.

Boosting is less robust to noise in the training exam-
ples as opposed to bagging. This is mainly because of the
weighted voting mechanism of boosting placing higher influ-
ence to more accurate component models in the sequence,
as opposed to simple majority voting used in bagging. One
way to improve generalization performance and computa-
tional efficiency in these situations is to select a subsample

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1043

of training examples uniform-randomly at each boosting
iteration [1, Sec. 10.12.2]. In this way, it can be possible
to reduce both bias and variance simultaneously. An exam-
ple of this is found in the works of [91] and [100] that
use downsampling of training examples at each boosting
iteration. In addition, this practice combined with a parallel
implementation of the evolutionary algorithm [91], [100] can
reduce training time and memory footprint in cases of large
datasets.

Methods for combining component model outputs based
on a trainable combination scheme (i.e., the weights are
obtained using the perceptron learning rule in [95], or using
least-squares linear regression in [96]) need in principle an
additional independent training sample for this purpose, or
they may run the risk of severe overfitting in cases of lim-
ited data sources. Stacking [1, Sec. 8.8] proposes the use
of leave-one-out cross-validation for this purpose, which is
often not practical for GP due to computational cost. The
use of trainable combination schemes such as those studied
in [74], [95], [96], and [98] should be preferred in data-rich
cases.

The final remark concerns the drawback of model averag-
ing on model interpretability. Single models evolved by GP are
highly interpretable, whereas weighted combinations of mod-
els lose this important feature. Simple majority voting in case
of bagging has the potential of retaining part of the white-box
property of GP.

VI. SEARCH OPERATORS AND SELECTION HEURISTICS

In this section, we draw attention to the generalization effect
of additional heuristics that drive evolutionary search; those
of search operators and selection methods. Research on these
topics is limited.

Increased mutation rate improved generalization in [102].
Semantic similarity-based crossover was studied in [104],
geometric semantic mutation was investigated in [127],
and geometric semantic crossover with angle-aware mat-
ing was proposed in [105]. All studies showed improved
prediction ability on unseen data using standard GP as baseline
performance. Size-fair crossover was applied to classification
in [103], where it was shown to control overfitting to some
extent.

A mixed search strategy that combines standard subtree
crossover and mutation operators with the optimization method
of gradient descent based on partial derivatives of a squared
loss function with respect to constants (leaf-nodes) in an
expression-tree was investigated in [106] and [107], and was
shown to improve generalization performance for symbolic
regression [107] and classification [106].

The effect of selection heuristics was studied in
[108] and [109]. In [109], tournament participants are selected
based on their structural dissimilarity compared to individuals
with bad generalization stored in a tabu list that is updated
throughout evolution. The work of [108] introduced a tour-
nament selection scheme that considers both training error
and variance of program-outputs as a measure of program
complexity.

A. Critical Discussion

Fine-tuning the mutation rate in an evolutionary run is
simpler to fine-tuning variants of semantic crossover and muta-
tion. It is as of yet undetermined how standard mutation
combined with regularization and model selection will per-
form against the more complex semantic operators. Size-fair
crossover [103] requires very little fine-tuning, but increases
the computational cost compared to standard mutation because
of the need to exchange similar-sized subtrees. Semantic
similarity-based crossover [104] is computationally ineffi-
cient compared to geometric semantic crossover [127] due
to the trial-and-error process required to identify semantically
similar subtrees. Geometric semantic crossover is shown to
improve generalization in [127], however at the expense of
interpretability of solutions since the evolved programs are
difficult to visualize. The use of angle-aware mating scheme
in [105] improves the exploration ability of geometric seman-
tic crossover [127] but at an increased computational cost for
choosing the parents.

The use of selection heuristics in the works
of [108] and [109] come with additional data require-
ments since the selection process itself uses two disjoint sets
for evaluating fitness. Their application may be more suitable
in cases of large datasets.

The application of gradient descent [106], [107] for opti-
mizing constant values in evolved programs is a useful
complement to the search ability of GP. A potential drawback
is that gradient descent requires a loss function that is differ-
entiable, which precludes the use of various fitness functions
that were discussed in Section IV-B. Squared loss is employed
in both studies of [106] and [107]. In cases of regression or
binary classification with f (x) = 0 as the class boundary, such
loss function can be effective. In case of multicategory classi-
fication, generalization of real-valued discriminants has been
shown to suffer when the number of classes is large, therefore
one would have to opt for binary classification schemes such
as one-versus-rest.

VII. CONCLUSION

We identified two broad families of methods of SML for
addressing the fundamental tradeoff of approximation on train-
ing data versus generalization on unseen data. These are
regularization and model averaging. Regularization are a class
of methods for placing restrictions on the eligible solutions to
the inverse ill-posed problem of finding a function that mini-
mizes the error on a finite training sample. Regularization in
GP takes the form of fitness functions that incorporate a model
complexity penalty; this creates evolutionary pressure toward
simpler solutions. Model averaging methods work by com-
bining the predictions of a committee of evolved component
models. Regularization methods sacrifice some bias in order
to reduce variance. Model averaging in GP works primarily
by reducing variance, leaving the bias effectively unaltered.

Furthermore, evolution is unique in orchestrating heuristics
that were designed with the aim of improving generalization.
These heuristics come in the form of fitness functions, training

1044 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

data sampling methods, and search operators and selection
schemes.

All of the aforementioned methods work in synergy with
model selection whose goal is to estimate the generalization
performance of different models in order to chose the best
one. The term model here may refer to different entities, for
example, an ultimately selected program or a committee of
programs for deployment, a subset of features, or evolutionary
algorithm hyper-parameters.

A brief note on the application of GP in a production envi-
ronment is as follows. There are two primary data-centric
factors that govern the preference of one model over another:
these are the signal-to-noise ratio of the target function and
the size of the training sample N relative to the dimension-
ality of the input space P. In any case, one should ensure
that a diverse set of models that tradeoff accuracy on training
data for model complexity are generated through a number of
independent GP runs. Restrictions in the form of regulariza-
tion can help constrain GP search. A form of model selection
can then be applied to chose a committee of models for mak-
ing predictions. We recommend combining the predictions of
multiple models as opposed to the use of a single model since
this can help alleviate some of the ambiguity caused by the
multiplicity of solutions given a training sample. In cases of
small datasets or in cases where P � N, validation based
on a single dataset may not be effective, and one should
resort on some form of cross-validation. Several techniques
for high-dimensional problems that follow the “less fitting is
better” principle are presented in [1, Ch. 18]. An additional
issue that needs to be addressed is that of undefined or exces-
sively large output of evolved models caused by asymptotes in
sparsely sampled areas of the input space. The use of interval
arithmetic [128], or the replacement of division operator with
analytic quotient [46] are candidate remedies to this problem.

We believe that this survey presented a representative sam-
ple of good practice of methods that enable GP to generalize.
We hope that this encourages more focused research, and stim-
ulates the field to define better benchmarking standards and
problem suites for assessing generalization. The GP commu-
nity needs to continue work on benchmarking that: 1) is based
on realistic problems; 2) measures generalization performance
on an independent test set; and 3) performs comparisons
between GP and different SML algorithms. Initial work on
benchmark problems is found in [129] for symbolic regression.

Finally, we hope that this survey paper can help stimulate
interest in developing hybrid systems between GP and other
SML algorithms. Examples of such hybrids are the evolution
of kernel functions for support vector machines [130], kernel
nearest neighbor classifier [131], and kernel regression [132];
the evolution of recurrent neural networks [133]; and the
construction of features for symbolic classifiers [134], [135].

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. New York, NY, USA: Springer-Verlag, 2009.

[2] R. Poli, W. B. Langdon, and N. F. McPhee. (2008). A Field Guide
to Genetic Programming. [Online]. Available: http://www.gp-field-
guide.org.uk

[3] I. Kushchu, “Genetic programming and evolutionary generaliza-
tion,” IEEE Trans. Evol. Comput., vol. 6, no. 5, pp. 431–442,
Oct. 2002.

[4] P. G. Espejo, S. Ventura, and F. Herrera, “A survey on the applica-
tion of genetic programming to classification,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 40, no. 2, pp. 121–144, Mar. 2010.

[5] K. Kim, Y. Shan, X. H. Nguyen, and R. I. McKay, “Probabilistic model
building in genetic programming: A critical review,” Genet. Program.
Evol. Mach., vol. 15, no. 2, pp. 115–167, Jun. 2014.

[6] Y. Hasegawa and H. Iba, “A Bayesian network approach to program
generation,” IEEE Trans. Evol. Comput., vol. 12, no. 6, pp. 750–764,
Dec. 2008.

[7] K. Kim, R. I. B. McKay, and N. X. Hoai, “Recursion-based biases in
stochastic grammar model genetic programming,” IEEE Trans. Evol.
Comput., vol. 20, no. 1, pp. 81–95, Feb. 2016.

[8] C. M. Bishop, Neural Networks for Pattern Recognition. New York,
NY, USA: Oxford Univ. Press, 1996.

[9] S.-H. Chen and T.-W. Kuo, “Overfitting or poor learning:
A critique of current financial applications of GP,” in Proc.
Genet. Program. (EuroGP), vol. 2610. Essex, U.K., Apr. 2003,
pp. 34–46.

[10] M. Keijzer and V. Babovic, “Genetic programming, ensemble methods
and the bias/variance tradeoff—Introductory investigations,” in Proc.
Genet. Program. (EuroGP), vol. 1802. Edinburgh, U.K., Apr. 2000,
pp. 76–90.

[11] A. Garg, S. Sriram, and K. Tai, “Empirical analysis of model selection
criteria for genetic programming in modeling of time series system,”
in Proc. IEEE Conf. Comput. Intell. Financ. Eng. Econ., Singapore,
2003, pp. 90–94.

[12] J. W. Davidson, D. A. Savic, and G. A. Walters, “Rainfall runoff
modeling using a new polynomial regression method,” in Proc. 4th
Int. Conf. Hydroinformat., Iowa City, IA, USA, Jul. 2000.

[13] K. Y. Chan, C. K. Kwong, T. S. Dillon, and Y. C. Tsim, “Reducing
overfitting in manufacturing process modeling using a backward elimi-
nation based genetic programming,” Appl. Soft Comput., vol. 11, no. 2,
pp. 1648–1656, 2011.

[14] J. Fitzgerald and C. Ryan, “Validation sets for evolutionary curtail-
ment with improved generalisation,” in Proc. 5th Int. Conf. Converg.
Hybrid Inf. Technol., vol. 6935. Daejeon, South Korea, Sep. 2011,
pp. 282–289.

[15] C. Neely, P. Weller, and R. Dittmar, “Is technical analysis in the for-
eign exchange market profitable? A genetic programming approach,”
J. Financ. Quant. Anal., vol. 32, no. 4, pp. 405–426, 1997.

[16] J. J. Rowland, “Generalisation and model selection in supervised learn-
ing with evolutionary computation,” in Applications of Evolutionary
Computing (LNCS 2611). Heidelberg, Germany: Springer-Verlag,
Apr. 2003, pp. 119–130.

[17] C. Tuite, A. Agapitos, M. O’Neill, and A. Brabazon, “Tackling
overfitting in evolutionary-driven financial model induction,” in
Natural Computing in Computational Finance (Volume 4) (Studies in
Computational Intelligence), vol. 380. Heidelberg, Germany: Springer,
2012, ch. 8, pp. 141–161.

[18] A. Agapitos, M. O’Neill, and A. Brabazon, “Evolutionary learning
of technical trading rules without data-mining bias,” in Proc. 11th
Int. Conf. Parallel Problem Solving Nat., vol. 6238. Kraków, Poland,
Sep. 2010, pp. 294–303.

[19] C. Gagné, M. Schoenauer, M. Parizeau, and M. Tomassini, “Genetic
programming, validation sets, and parsimony pressure,” in Proc. 9th
Eur. Conf. Genet. Program., vol. 3905. Budapest, Hungary, Apr. 2006,
pp. 109–120.

[20] L. Panait and S. Luke, “Methods for evolving robust programs,” in
Proc. Genet. Evol. Comput. Conf., vol. 2724, Jul. 2003, pp. 1740–1751.

[21] D. Robilliard and C. Fonlupt, “Backwarding: An overfitting control
for genetic programming in a remote sensing application,” in Proc. 5th
Int. Conf. Artif. Evol. (EA), vol. 2310. Creusot, France, Oct. 2001,
pp. 245–254.

[22] J. J. Rowland, “Model selection methodology in supervised learn-
ing with evolutionary computation,” Biosystems, vol. 72, nos. 1–2,
pp. 187–196, Nov. 2003.

[23] C. Igel, “A note on generalization loss when evolving adaptive pat-
tern recognition systems,” IEEE Trans. Evol. Comput., vol. 17, no. 3,
pp. 345–352, Jun. 2013.

[24] K. Neshatian and M. Zhang, “Genetic programming for feature subset
ranking in binary classification problems,” in Proc. 12th Eur. Conf.
Genet. Program. (EuroGP), vol. 5481. Tübingen, Germany, Apr. 2009,
pp. 121–132.

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1045

[25] K. Neshatian and M. Zhang, “Unsupervised elimination of redundant
features using genetic programming,” in Proc. 22nd Aust. Joint Conf.
Artif. Intell. (AI), vol. 5866. Melbourne, VIC, Australia, Dec. 2009,
pp. 432–442.

[26] K. Neshatian and M. Zhang, “Improving relevance measures
using genetic programming,” in Proc. 15th Eur. Conf. Genet.
Program. (EuroGP), vol. 7244. Málaga, Spain, Apr. 2012,
pp. 97–108.

[27] K. Neshatian and M. Zhang, “Pareto front feature selection: Using
Genetic programming to explore feature space,” in Proc. 11th Annu.
Conf. Genet. Evol. Comput. (GECCO), Montreal, QC, Canada,
Jul. 2009, pp. 1027–1034.

[28] K. Neshatian and M. Zhang, “Dimensionality reduction in face detec-
tion: A genetic programming approach,” in Proc. 24th Int. Conf.
Image Vis. Comput. New Zealand (IVCNZ), Wellington, New Zealand,
Nov. 2009, pp. 391–396.

[29] I. Sandin et al., “Aggressive and effective feature selection using
genetic programming,” in Proc. IEEE Congr. Evol. Comput., Brisbane,
QLD, Australia, Jun. 2012, pp. 2718–2725.

[30] R. Hunt, K. Neshatian, and M. Zhang, “A genetic programming
approach to hyper-heuristic feature selection,” in Proc. 9th Int. Conf.
Simulat. Evol. Learn. (SEAL), vol. 7673. Hanoi, Vietnam, Dec. 2012,
pp. 320–330.

[31] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve gen-
eralization of genetic programming for high-dimensional symbolic
regression,” IEEE Trans. Evol. Comput., vol. 21, no. 5, pp. 792–806,
Oct. 2017.

[32] G. Dick, “Sensitivity-like analysis for feature selection in genetic pro-
gramming,” in Proc. Genet. Evol. Comput. Conf. (GECCO), Berlin,
Germany, Jul. 2017, pp. 401–408.

[33] K. Neshatian, M. Zhang, and P. Andreae, “Genetic programming for
feature ranking in classification problems,” in Proc. 7th Int. Conf.
Simulat. Evol. Learn. (SEAL), vol. 5361. Melbourne, VIC, Australia,
Dec. 2008, pp. 544–554.

[34] W. B. Langdon and B. F. Buxton, “Genetic programming for mining
DNA chip data from cancer patients,” Genet. Program. Evol. Mach.,
vol. 5, no. 3, pp. 251–257, Sep. 2004.

[35] K. Neshatian and M. Zhang, “Using genetic programming for context-
sensitive feature scoring in classification problems,” Connection Sci.,
vol. 23, no. 3, pp. 183–207, Sep. 2011.

[36] R. Loughran, A. Agapitos, A. Kattan, A. Brabazon, and M. O’Neill,
“Feature selection for speaker verification using genetic programming,”
Evol. Intell., vol. 10, nos. 1–2, pp. 1–21, 2017.

[37] S. Ahmed, M. Zhang, and L. Peng, “Enhanced feature selection for
biomarker discovery in LC-MS data using GP,” in Proc. IEEE Conf.
Evol. Comput., vol. 1. Cancún, Mexico, Jun. 2013, pp. 584–591.

[38] S. Ahmed, M. Zhang, and L. Peng, “Feature selection and classification
of high dimensional mass spectrometry data: A genetic programming
approach,” in Proc. EvoBIO, vol. 7833. Vienna, Austria, Apr. 2013,
pp. 43–55.

[39] B. Tran, B. Xue, and M. Zhang, “Genetic programming for feature
construction and selection in classification on high-dimensional data,”
Memetic Comput., vol. 8, no. 1, pp. 3–15, Mar. 2016.

[40] D. P. Muni, N. R. Pal, and J. Das, “Genetic programming for simulta-
neous feature selection and classifier design,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 1, pp. 106–117, Feb. 2006.

[41] A. Purohit, N. S. Chaudhari, and A. Tiwari, “Construction of classifier
with feature selection based on genetic programming,” in Proc. IEEE
Congr. Evol. Comput. (CEC), Barcelona, Spain, Jul. 2010, pp. 1–5.

[42] Q. Chen, B. Xue, B. Niu, and M. Zhang, “Improving generalisa-
tion of genetic programming for high-dimensional symbolic regression
with feature selection,” in Proc. IEEE Congr. Evol. Comput. (CEC),
Vancouver, BC, Canada, Jul. 2016, pp. 3793–3800.

[43] E. Vladislavleva, T. Friedrich, F. Neumann, and M. Wagner, “Predicting
the energy output of wind farms based on weather data: Important
variables and their correlation,” Renew. Energy, vol. 50, pp. 236–243,
Feb. 2013.

[44] A. Friedlander, K. Neshatian, and M. Zhang, “Meta-learning
and feature ranking using genetic programming for classification:
Variable terminal weighting,” in Proc. IEEE Congr. Evol. Comput.,
New Orleans, LA, USA, Jun. 2011, pp. 941–948.

[45] N. Y. Nikolaev and H. Iba, “Regularization approach to inductive
genetic programming,” IEEE Trans. Evol. Comput., vol. 54, no. 4,
pp. 359–375, Aug. 2001.

[46] J. Ni and P. Rockett, “Tikhonov regularization as a complexity measure
in multiobjective genetic programming,” IEEE Trans. Evol. Comput.,
vol. 19, no. 2, pp. 157–166, Apr. 2015.

[47] Y. Wu, J. Lu, and Y. Sun, “Genetic programming based on an adaptive
regularization method,” in Proc. Int. Conf. Comput. Intell. Security,
vol. 1. Guangzhou, China, Nov. 2006, pp. 324–327.

[48] Y. S. Yeun, K. H. Lee, S. M. Han, and Y. S. Yang, “Smooth fitting with
a method for determining the regularization parameter under the genetic
programming algorithm,” Inf. Sci., vol. 133, nos. 3–4, pp. 175–194,
Apr. 2001.

[49] E. J. Vladislavleva, G. F. Smits, and D. den Hertog, “Order of
nonlinearity as a complexity measure for models generated by sym-
bolic regression via Pareto genetic programming,” IEEE Trans. Evol.
Comput., vol. 13, no. 2, pp. 333–349, Apr. 2009.

[50] Q. Chen, B. Xue, L. Shang, and M. Zhang, “Improving generalisation
of genetic programming for symbolic regression with structural risk
minimisation,” in Proc. Genet. Evol. Comput. Conf. (GECCO), Denver,
CO, USA, Jul. 2016, pp. 709–716.

[51] Y. Bernstein, X. Li, V. Ciesielski, and A. Song, “Multiobjective parsi-
mony enforcement for superior generalisation performance,” in Proc.
IEEE Congr. Evol. Comput., Portland, OR, USA, Jun. 2004, pp. 83–89.

[52] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “Data mining with
constrained-syntax genetic programming: Applications to medical data
sets,” in Proc. Intell. Data Anal. Med. Pharmacol. (IDAMAP), 2001.

[53] M. C. J. Bot, “Improving induction of linear classification trees with
genetic programming,” in Proc. Genet. Evol. Comput. Conf. (GECCO),
Las Vegas, NV, USA, Jul. 2000, pp. 403–410.

[54] M. Castelli, L. Manzoni, S. Silva, and L. Vanneschi, “A comparison
of the generalization ability of different genetic programming frame-
works,” in Proc. IEEE Congr. Evol. Comput. (CEC), Barcelona, Spain,
Jul. 2010, pp. 1–8.

[55] M. J. Cavaretta and K. Chellapilla, “Data mining using genetic pro-
gramming: The implications of parsimony on generalization error,” in
Proc. Congr. Evol. Comput., vol. 2. Washington, DC, USA, Jul. 1999,
pp. 1330–1337.

[56] G. Kronberger, M. Kommenda, and M. Affenzeller, “Overfitting detec-
tion and adaptive covariant parsimony pressure for symbolic regres-
sion,” in Proc. 3rd Symbolic Regression Model. Workshop GECCO,
Dublin, Ireland, Jul. 2011, pp. 631–638.

[57] J. P. Rosca, “Generality versus size in genetic programming,” in
Proc. 1st Annu. Conf. Genet. Program., Stanford, CA, USA, Jul. 1996,
pp. 381–387.

[58] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” in Proc. 5th Int. Conf. Genet. Algorithms (ICGA),
Jul. 1993, pp. 303–311.

[59] B.-T. Zhang, “Bayesian methods for efficient genetic programming,”
Genet. Program. Evol. Mach., vol. 1, no. 3, pp. 217–242, Jul. 2000.

[60] H. Iba, H. de Garis, and T. Sato, “Genetic programming using
a minimum description length principle,” in Advances in Genetic
Programming. Cambridge, MA, USA: MIT Press, 1994, ch. 12,
pp. 265–284.

[61] C. E. Borges, C. L. Alonso, and J. L. Montaña, “Model selection in
genetic programming,” in Proc. Genet. Evol. Comput. Conf. (GECCO),
Portland, OR, USA, Jul. 2010, pp. 985–986.

[62] M. Castelli, L. Manzoni, S. Silva, and L. Vanneschi, “A quantita-
tive study of learning and generalization in genetic programming,” in
Proc. 14th Eur. Conf. Genet. Program. (EuroGP), vol. 6621. Turin,
Italy, Apr. 2011, pp. 25–36.

[63] E. Vladislavleva, G. Smits, and D. den Hertog, “On the importance of
data balancing for symbolic regression,” IEEE Trans. Evol. Comput.,
vol. 14, no. 2, pp. 252–277, Apr. 2010.

[64] A. Agapitos, A. Brabazon, and M. O’Neill, “Controlling overfitting in
symbolic regression based on a bias/variance error decomposition,” in
Proc. PPSN, vol. 7491. Sicily, Italy, Sep. 2012, pp. 438–447.

[65] J. Fitzgerald, R. M. A. Azad, and C. Ryan, “A bootstrapping
approach to reduce over-fitting in genetic programming,” in Proc. 15th
Annu. Conf. GECCO, Amsterdam, The Netherlands, Jul. 2013,
pp. 1113–1120.

[66] M. Zhang and U. Bhowan, “Program size and pixel statistics in genetic
programming for object detection,” in Applications of Evolutionary
Computing (LNCS 3005), Coimbra, Portugal, Apr. 2004, pp. 379–388.

[67] A. Agapitos, M. O’Neill, A. Brabazon, and T. Theodoridis, “Maximum
margin decision surfaces for increased generalisation in evolution-
ary decision tree learning,” in Proc. 14th Eur. Conf. Genet. Program.
(EuroGP), vol. 6621. Turin, Italy, Apr. 2011, pp. 61–72.

[68] M. Zhang and W. Smart, “Using Gaussian distribution to construct
fitness functions in genetic programming for multiclass object clas-
sification,” Pattern Recognit. Lett., vol. 27, no. 11, pp. 1266–1274,
Aug. 2006.

1046 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

[69] W. Smart and M. Zhang, “Using genetic programming for multiclass
classification by simultaneously solving component binary classifica-
tion problems,” in Proc. 8th Eur. Conf. Genet. Program., vol. 3447.
Lausanne, Switzerland, Mar./Apr. 2005, pp. 227–239.

[70] U. Bhowan, M. Johnston, and M. Zhang, “Developing new fitness
functions in genetic programming for classification with unbalanced
data,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2,
pp. 406–421, Apr. 2012.

[71] T. Theodoridis, A. Agapitos, and H. Hu, “A Gaussian groundplan pro-
jection area model for evolving probabilistic classifiers,” in Proc. ACM
13th Annu. Conf. Genet. Evol. Comput. (GECCO), Dublin, Ireland,
Jul. 2011, pp. 1339–1346.

[72] J. de Jong and K. Neshatian, “Binary classification using genetic
programming: Evolving discriminant functions with dynamic thresh-
olds,” in Trends and Applications in Knowledge Discovery and Data
Mining (LNCS 7867). Heidelberg, Germany: Springer, Apr. 2013,
pp. 464–474.

[73] J. Doucette and M. I. Heywood, “GP classification under imbal-
anced data sets: Active sub-sampling and AUC approximation,” in
Proc. 11th Eur. Conf. Genet. Program. (EuroGP), vol. 4971. Naples,
Italy, Mar. 2008, pp. 266–277.

[74] W. B. Langdon and B. F. Buxton, “Genetic programming for combining
classifiers,” in Proc. Genet. Evol. Comput. Conf., San Francisco, CA,
USA, Jul. 2001, pp. 66–73.

[75] J. Eggermont, A. E. Eiben, and J. I. van Hemert, “Adapting the fitness
function in GP for data mining,” in Proc. Genet. Program. EuroGP,
vol. 1598. Gothenburg, Sweden, May 1999, pp. 193–202.

[76] J. Ni and P. Rockett, “Training genetic programming classifiers by
vicinal-risk minimization,” Genet. Program. Evol. Mach., vol. 16, no. 1,
pp. 3–25, Mar. 2015.

[77] M. Conrads, P. Nordin, and W. Banzhaf, “Speech sound discrimina-
tion with genetic programming,” in Proc. 1st Eur. Workshop Genet.
Program., vol. 1391. Paris, France, Apr. 1998, pp. 113–129.

[78] C. Gathercole and P. Ross, “Dynamic training subset selection for
supervised learning in genetic programming,” in Parallel Problem
Solving From Nature—PPSN III (Lecture Notes in Computer
Science), vol. 866. Heidelberg, Germany: Springer-Verlag, Oct. 1994,
pp. 312–321.

[79] I. Goncalves, S. Silva, J. B. Melo, and J. M. B. Carreiras, “Random
sampling technique for overfitting control in genetic programming,” in
Proc. 15th Eur. Conf. Genet. Program. (EuroGP), vol. 7244. Málaga,
Spain, Apr. 2012, pp. 217–228.

[80] Y. Liu and T. Khoshgoftaar, “Reducing overfitting in genetic program-
ming models for software quality classification,” in Proc. 8th IEEE
Symp. Int. High Assurance Syst. Eng., Tampa, FL, USA, Mar. 2004,
pp. 56–65.

[81] I. Gonçalves and S. Silva, “Balancing learning and overfitting in genetic
programming with interleaved sampling of training data,” in Proc. 16th
Eur. Conf. Genet. Program. (EuroGP), vol. 7831. Vienna, Austria,
Apr. 2013, pp. 73–84.

[82] D. Song, M. I. Heywood, and A. N. Zincir-Heywood, “Training genetic
programming on half a million patterns: An example from anomaly
detection,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 225–239,
Jun. 2005.

[83] B. Dolin, F. H. Bennett, III, and E. G. Rieffel, “Co-evolving an effec-
tive fitness sample: Experiments in symbolic regression and distributed
robot control,” in Proc. ACM Symp. Appl. Comput., Madrid, Spain,
2002, pp. 553–559.

[84] M. D. Schmidt and H. Lipson, “Coevolution of fitness predictors,”
IEEE Trans. Evol. Comput., vol. 12, no. 6, pp. 736–749, Dec. 2008.

[85] E. V. Siegel, “Competitively evolving decision trees against fixed train-
ing cases for natural language processing,” in Advances in Genetic
Programming. Cambridge, MA, USA: MIT Press, 1994, ch. 19,
pp. 409–423.

[86] M. A. Haeri, M. M. Ebadzadeh, and G. Folino, “Improving GP general-
ization: A variance-based layered learning approach,” Genet. Program.
Evol. Mach., vol. 16, no. 1, pp. 27–55, Mar. 2015.

[87] J. M. Daida, T. F. Bersano-Begey, S. J. Ross, and J. F. Vesecky,
“Computer-assisted design of image classification algorithms: Dynamic
and static fitness evaluations in a scaffolded genetic programming envi-
ronment,” in Proc. 1st Annu. Conf. Genet. Program., Stanford, CA,
USA, Jul. 1996, pp. 279–284.

[88] T. H. Nguyen and X. H. Nguyen, “Learning in stages: A layered learn-
ing approach for genetic programming,” in Proc. IEEE Conf. Comput.
Commun. Technol. Res. Innov. Vis. Future (RIVF), Ho Chi Minh City,
Vietnam, Feb./Mar. 2012, pp. 1–4.

[89] H. Iba, “Bagging, boosting, and bloating in genetic programming,” in
Proc. Genet. Evol. Comput. Conf., vol. 2. Orlando, FL, USA, Jul. 1999,
pp. 1053–1060.

[90] G. Folino, C. Pizzuti, and G. Spezzano, “Ensemble techniques for par-
allel genetic programming based classifiers,” in Proc. Genet. Program.
EuroGP, vol. 2610. Essex, U.K., Apr. 2003, pp. 59–69.

[91] G. Folino, C. Pizzuti, and G. Spezzano, “GP ensembles for large-
scale data classification,” IEEE Trans. Evol. Comput., vol. 10, no. 5,
pp. 604–616, Oct. 2006.

[92] J.-H. Hong and S.-B. Cho, “The classification of cancer based on DNA
microarray data that uses diverse ensemble genetic programming,”
Artif. Intell. Med., vol. 36, no. 1, pp. 43–58, Jan. 2006.

[93] Y. Zhang and S. Bhattacharyya, “Genetic programming in classifying
large-scale data: An ensemble method,” Inf. Sci., vol. 163, nos. 1–3,
pp. 85–101, Jun. 2004.

[94] K.-H. Liu and C.-G. Xu, “A genetic programming-based approach to
the classification of multiclass microarray datasets,” Bioinformatics,
vol. 25, no. 3, pp. 331–337, Feb. 2009.

[95] M. Brameier and W. Banzhaf, “Evolving teams of predictors with linear
genetic programming,” Genet. Program. Evol. Mach., vol. 2, no. 4,
pp. 381–407, Dec. 2001.

[96] A. Agapitos, M. O’Neill, and A. Brabazon, “Ensemble Bayesian
model averaging in genetic programming,” in Proc. IEEE Congr. Evol.
Comput., Beijing, China, Jul. 2014, pp. 2451–2458.

[97] C. De Stefano, G. Folino, F. Fontanella, and A. S. di Freca, “Using
Bayesian networks for selecting classifiers in GP ensembles,” Inf. Sci.,
vol. 258, pp. 200–216, Feb. 2014.

[98] W. B. Langdon, S. J. Barrett, and B. F. Buxton, “Combining decision
trees and neural networks for drug discovery,” in Proc. 5th Eur. Conf.
Genet. Program. (EuroGP), vol. 2278. Kinsale, Ireland, Apr. 2002,
pp. 60–70.

[99] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Reusing genetic
programming for ensemble selection in classification of unbalanced
data,” IEEE Trans. Evol. Comput., vol. 18, no. 6, pp. 893–908,
Dec. 2014.

[100] G. Folino, C. Pizzuti, and G. Spezzano, “Boosting technique for
combining cellular GP classifiers,” in Proc. 7th Eur. Conf. Genet.
Program. (EuroGP), vol. 3003. Coimbra, Portugal, Apr. 2004,
pp. 47–56.

[101] G. Paris, D. Robilliard, and C. Fonlupt, “Applying boosting techniques
to genetic programming,” in Proc. 5th Int. Conf. Evol. Artif. (EA),
vol. 2310. Creusot, France, Oct. 2001, pp. 267–278.

[102] W. Banzhaf, F. D. Francone, and P. Nordin, “The effect of extensive
use of the mutation operator on generalization in genetic programming
using sparse data sets,” in Parallel Problem Solving From Nature—
PPSN IV (LNCS 1141). Berlin, Germany: Springer-Verlag, Sep. 1996,
pp. 300–309.

[103] G. Paris, D. Robilliard, and C. Fonlupt, “Exploring overfitting in
genetic programming,” in Proc. 6th Int. Conf. Evol. Artif., vol. 2936.
Marseille, France, Oct. 2003, pp. 267–277.

[104] U. N. Quang, T. H. Nguyen, X. H. Nguyen, and M. O’Neill, “Improving
the generalisation ability of genetic programming with semantic simi-
larity based crossover,” in Proc. EuroGP, vol. 6021. Istanbul, Turkey,
Apr. 2010, pp. 184–195.

[105] Q. Chen, B. Xue, Y. Mei, and M. Zhang, “Geometric semantic
crossover with an angle-aware mating scheme in genetic programming
for symbolic regression,” in Proc. 20th Eur. Conf. Genet. Program.
(EuroGP), vol. 10196. Amsterdam, The Netherlands, Apr. 2017,
pp. 229–245.

[106] M. Zhang and W. Smart, “Genetic programming with gradient descent
search for multiclass object classification,” in Proc. 7th Eur. Conf.
Genet. Program. (EuroGP), vol. 3003. Coimbra, Portugal, Apr. 2004,
pp. 399–408.

[107] Q. Chen, B. Xue, and M. Zhang, “Generalisation and domain adap-
tation in GP with gradient descent for symbolic regression,” in
Proc. IEEE Congr. Evol. Comput. (CEC), Sendai, Japan, May 2015,
pp. 1137–1144.

[108] R. M. A. Azad and C. Ryan, “Variance based selection to improve test
set performance in genetic programming,” in Proc. ACM 13th Annu.
Conf. Genet. Evol. Comput. (GECCO), Dublin, Ireland, Jul. 2011,
pp. 1315–1322.

[109] L. Vanneschi and S. Gustafson, “Using crossover based similarity mea-
sure to improve genetic programming generalization ability,” in Proc.
ACM 11th Annu. Conf. Genet. Evol. Comput. (GECCO), Montreal, QC,
Canada, Jul. 2009, pp. 1139–1146.

[110] K. Burnhum and D. Anderson, Model Selection and Multimodel
Inference, 2nd ed. New York, NY, USA: Springer, 2010.

AGAPITOS et al.: SURVEY OF SML ELEMENTS IN GP 1047

[111] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artif. Intell., vol. 97, nos. 1–2, pp. 273–324, Dec. 1997.

[112] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[113] M. Dash and H. Liu, “Feature selection for classification,” Intell. Data
Anal., vol. 1, nos. 1–4, pp. 131–156, 1997.

[114] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evo-
lutionary computation approaches to feature selection,” IEEE Trans.
Evol. Comput., vol. 20, no. 4, pp. 606–626, Aug. 2016.

[115] B. Xue, M. Zhang, and W. N. Browne, “A comprehensive comparison
on evolutionary feature selection approaches to classification,” Int. J.
Comput. Intell. Appl., vol. 14, no. 2, 2015.

[116] R. Hunt, K. Neshatian, and M. Zhang, “Scalability analysis of
genetic programming classifiers,” in Proc. IEEE Congr. Evol. Comput.,
Brisbane, QLD, Australia, Jun. 2012, pp. 509–516.

[117] M. Zhang and W. Smart, “Multiclass object classification using
genetic programming,” in Applications of Evolutionary Computing
(LNCS 3005). Heidelberg, Germany: Springer-Verlag, Apr. 2004,
pp. 369–378.

[118] S. Silva and L. Vanneschi, “Operator equalisation, bloat and overfitting:
A study on human oral bioavailability prediction,” in Proc. ACM 11th
Annu. Conf. Genet. Evol. Comput. (GECCO), Montreal, QC, Canada,
Jul. 2009, pp. 1115–1122.

[119] S. Mahler, D. Robilliard, and C. Fonlupt, “Tarpeian bloat control and
generalization accuracy,” in Proc. 8th Eur. Conf. Genet. Program.,
vol. 3447. Lausanne, Switzerland, Mar./Apr. 2005, pp. 203–214.

[120] L. Vanneschi, M. Castelli, and S. Silva, “Measuring bloat, overfitting
and functional complexity in genetic programming,” in Proc. ACM
12th Annu. Conf. Genet. Evol. Comput. (GECCO), Portland, OR, USA,
Jul. 2010, pp. 877–884.

[121] G. Dick, “Bloat and generalisation in symbolic regression,” in
Proc. 10th Int. Conf. Simulat. Evol. Learn. (SEAL), vol. 8886. Dunedin,
New Zealand, 2014, pp. 491–502.

[122] J. Fitzgerald and C. Ryan, “On size, complexity and generalisation
error in GP,” in Proc. ACM Conf. Genet. Evol. Comput. (GECCO),
Vancouver, BC, Canada, Jul. 2014, pp. 903–910.

[123] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse
ensembles using genetic programming for classification with unbal-
anced data,” IEEE Trans. Evol. Comput., vol. 17, no. 3, pp. 368–386,
Jun. 2013.

[124] K. Imamura, T. Soule, R. B. Heckendorn, and J. A. Foster, “Behavioral
diversity and a probabilistically optimal GP ensemble,” Genet.
Program. Evol. Mach., vol. 4, no. 3, pp. 235–253, Sep. 2003.

[125] R. Thomason and T. Soule, “Novel ways of improving cooperation
and performance in ensemble classifiers,” in Proc. ACM 9th Annu.
Conf. Genet. Evol. Comput. (GECCO), vol. 2. London, U.K., Jul. 2007,
pp. 1708–1715.

[126] G. Folino, C. Pizzuti, and G. Spezzano, “Training distributed GP
ensemble with a selective algorithm based on clustering and pruning
for pattern classification,” IEEE Trans. Evol. Comput., vol. 12, no. 4,
pp. 458–468, Aug. 2008.

[127] I. Gonçalves, S. Silva, and C. M. Fonseca, “On the generalization abil-
ity of geometric semantic genetic programming,” in Proc. 18th Eur.
Conf. Genet. Program., vol. 9025. Copenhagen, Denmark, Apr. 2015,
pp. 41–52.

[128] M. Keijzer, “Improving symbolic regression with interval arithmetic
and linear scaling,” in Proc. Genet. Program. EuroGP, vol. 2610. Essex,
U.K., Apr. 2003, pp. 70–82.

[129] D. R. White et al., “Better GP benchmarks: Community survey results
and proposals,” Genet. Program. Evol. Mach., vol. 14, no. 1, pp. 3–29,
Mar. 2013.

[130] K. M. Sullivan and S. Luke, “Evolving kernels for support vector
machine classification,” in Proc. 9th Annu. Conf. Genet. Evol. Comput.
(GECCO), vol. 2. London, U.K., Jul. 2007, pp. 1702–1707.

[131] C. Gagné, M. Schoenauer, M. Sebag, and M. Tomassini, “Genetic
programming for kernel-based learning with co-evolving subsets
selection,” in Parallel Problem Solving From Nature—PPSN IX
(LNCS 4193). Heidelberg, Germany: Springer-Verlag, Sep. 2006,
pp. 1008–1017.

[132] A. Agapitos, J. McDermott, M. O’Neill, A. Kattan, and A. Brabazon,
“Higher order functions for kernel regression,” in Proc. 17th Eur. Conf.
Genet. Program., vol. 8599. Granada, Spain, Apr. 2014, pp. 1–12.

[133] A. J. Turner and J. F. Miller, “Recurrent cartesian genetic programming
of artificial neural networks,” Genet. Program. Evol. Mach., vol. 18,
no. 2, pp. 185–212, Jun. 2017.

[134] K. Neshatian, M. Zhang, and P. Andreae, “A filter approach to multiple
feature construction for symbolic learning classifiers using genetic pro-
gramming,” IEEE Trans. Evol. Comput., vol. 16, no. 5, pp. 645–661,
Oct. 2012.

[135] K. Krawiec, “Genetic programming-based construction of features for
machine learning and knowledge discovery tasks,” Genet. Program.
Evol. Mach., vol. 3, no. 4, pp. 329–343, Dec. 2002.

Alexandros Agapitos received the B.Sc. degree in
software engineering from the University of South
Wales, Pontypridd, U.K., in 2002, and the M.Sc.
degree in e-commerce technology and the Ph.D.
degree in computer science (with a focus on genetic
programming and its application to the evolution of
recursive and memory-enabled algorithms) from the
University of Essex, Colchester, U.K., in 2004 and
2009, respectively.

He moved to University College Dublin, Dublin,
Ireland, in 2010, where he was a Post-Doctoral

Research Fellow with the Complex and Adaptive Systems Laboratory until
2016. He is currently a Principal Researcher with the Ireland Research and
Innovation Center, Huawei Technologies, Dublin, where he applies artificial
intelligence to solve problems in telecommunication networks. His cur-
rent research interests include evolutionary computation and artificial neural
networks applied to reinforcement learning.

Roisin Loughran received the B.E. degree in
electronic engineering from University College
Dublin (UCD), Dublin, Ireland, in 2001, the
M.Phil. degree in music and media technologies
from Trinity College Dublin, Dublin, in 2004, and
the Ph.D. degree in instrument recognition using
evolutionary computation from the University of
Limerick, Limerick, Ireland, in 2010.

She is currently a Senior Researcher of the
Applications in Evolutionary Design Project
(App’Ed) under SFI with UCD, where she is part

of the Natural Computing Research and Applications Group, specializing in
applying natural computing methods to computational creativity.

Miguel Nicolau received the B.Sc. degree from
UCL, Ottignies-Louvain-la-Neuve, Belgium, and the
B.Sc., M.Sc., and Ph.D. degrees from the University
of Limerick, Limerick, Ireland.

He was an Expert Engineer with INRIA Institute,
Paris, France. After moving back to Ireland, he
was a Research Fellow and an Assistant Professor
with University College Dublin, Dublin, Ireland.
His research and teaching experience spans over 18
years, and includes positions at the University of
Limerick, Fudan University, Shanghai, China, and

University College Dublin.

1048 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 23, NO. 6, DECEMBER 2019

Simon Lucas received the Ph.D. degree in artificial
intelligence from the University of Southampton,
Southampton, U.K., with a focus on neural networks
based on grammars, an early form of deep neural
network.

He is a Professor of Artificial Intelligence and
the Head of the School of Electronic Engineering
and Computer Science, Queen Mary University of
London, London, U.K., where he also heads the
Game AI Research Group. His currrent research
interests include novel methods for better game AI,

using AI to design better games, and artificial general intelligence.
Dr. Lucas is the Founding Editor-in-Chief of the IEEE TRANSACTIONS ON

GAMES and co-founded the IEEE Conference on Computational Intelligence
and Games.

Michael O’Neill received the Ph.D. degree in com-
puter science from the University of Limerick,
Limerick, Ireland.

He is the ICON Chair of Business Analytics
with the School of Business, University College
Dublin (UCD), Dublin, Ireland, where he is the
Founding Director of the UCD Natural Computing
Research and Applications Group, the Associate
Dean and the Vice-Principal (Research) of the UCD
Michael Smurfit Graduate Business School from
2015 to 2018, and the Director of the UCD’s

Interdisciplinary Research Institute from 2012 to 2015. One of the inven-
tors of grammatical evolution, he is the lead author of the seminal book on
this subject, and has published over 300 peer-reviewed publications including
4 monographs. His current research interests include automatic programming
and genetic programming, with applications in areas such as communications
networks, business analytics, sports analytics, and design and creativity.

Anthony Brabazon received the B.Com. degree
from University College Dublin, Dublin, Ireland,
in 1988, the first M.S. degree in statistics and the
second M.S. degree in operations research from
Stanford University, Stanford, CA, USA, in 1994,
the M.B.A. degree from Heriot-Watt University,
Edinburgh, U.K., in 1998, and the D.B.A. degree
from Kingston University, London, U.K., in 2005.

He is currently the Dean of the School
of Business, University College Dublin, Dublin,
Ireland, where he is the Co-Founder and the Co-

Director of the Natural Computing Research and Applications Group. He
has published over 200 peer-reviewed studies and authored/edited 16 books.
His current research interests include development of natural computing
algorithms and their application to real-world problems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

