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Abstract— Traditional single-tiered wireless communications
networks cannot scale to satisfy exponentially rising demand.
Operators are increasing capacity by densifying their existing
macro cell deployments with co-channel small cells. However,
cross-tier interference and load balancing issues present new opti-
mization challenges in channel sharing heterogeneous networks
(HetNets). One-size-fits-all heuristics for allocating resources are
highly suboptimal, but designing ad hoc controllers requires
significant human expertise and manual fine-tuning. In this paper,
a unified, flexible, and fully automated approach for end-to-
end optimization in multi-layer HetNets is presented. A hill
climbing algorithm is developed for reconfiguring cells in real
time in order to track dynamic traffic patterns. Schedulers for
allocating spectrum to user equipment are automatically synthe-
sized using grammar-based genetic programming. The proposed
methods for configuring the HetNet and scheduling in the time–
frequency domain can address ad hoc objective functions. Thus,
the operator can flexibly tune the tradeoff between peak rates
and fairness. Far cell edge downlink rates are increased by up to
250% compared with non-adaptive baselines. Alternatively, peak
rates are increased by up to 340%. The experiments illustrate
the utility and future potential of natural computing techniques
in software-defined wireless communications networks.

Index Terms— Heterogeneous networks, software defined net-
working, genetic programming, self-organizing networks.

I. INTRODUCTION

MOBILE traffic has grown eighteen-fold over the past
five years [1]. Traditional wireless infrastructure cannot

scale to satisfy demand during the current era of exponential
growth [2]. Densification, virtualization, and self-optimization
are three key design principles for realizing the 5G vision of
ultra-high performance mobile communications networks.

Densification refers to the deployment of Small Cells (SCs)
alongside existing Macro Cells (MCs) in order to increase
capacity by bringing the network closer to User Equip-
ments (UEs: smartphones, tablets, etc.). Operators agree that
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densification is the only way to address the existence of
fluid hotspots. Thus, the cellular paradigm has evolved from a
homogeneous single-tiered model to a heterogeneous multi-
tiered model. Heterogeneous Networks (HetNets) are spec-
trally efficient since both cell tiers can transmit across the same
scarce and expensive spectrum (i.e. bandwidth) [3]. How-
ever, two major issues arise in dense channel sharing archi-
tectures [4]. Firstly, lower-powered SCs struggle to offload
UEs from much stronger MCs. Secondly, UEs at cell edges
experience severe interference from nearby co-channel cells.
Inefficient offloading, coupled with increased interference due
to higher cell density, results in frequent handovers and more
dropped calls. This presents a major problem for operators
because maintaining high customer satisfaction is crucial in
the fiercely competitive wireless telecommunications industry.

Release 10 of the 3rd Generation Partnership Proj-
ect (3GPP) [5] specified mechanisms for load balancing and
interference mitigation in HetNets. However, manually design-
ing controllers that implement these protocols is time consum-
ing and labor intensive. One-size-fits-all algorithms are highly
suboptimal because they cannot handle corner cases that arise
in different deployment scenarios. In previous work, ad-hoc
heuristics that address isolated sub-problems were proposed.
Specialized controllers tend to produce contradictory control
actions when combined. Operators will not permit trial and
error optimization in expensive deployments, nor inexplica-
ble decision-making by unpredictable multi-layer heuristics.
We present a novel, fully automated, and unified approach
to self-optimization in multi-layer HetNets that devises
complementary settings across different layers. Automation
replaces ad-hoc, costly, and inefficient design by human
experts.

In this paper the NP-hard [6] problem that lies at the heart of
Long Term Evolution (LTE) HetNets is addressed. Techniques
for jointly optimizing UE-cell associations and scheduling UEs
to receive data in the time-frequency domain are developed.
This coupled optimization problem is challenging for three
main reasons. Firstly, HetNets consist of multiple layers of
parameters; the settings devised at a particular layer (e.g. SC
powers) must be complementary with those at the other layers
(e.g. MC muting frequencies). Secondly, updated schedules are
required every few milliseconds. Thirdly, wireless networks
are highly dynamic and uncertain environments. The contri-
butions of this study are as follows:

• A unified and data-driven hill climbing algorithm for
reconfiguring cells in real time as traffic patterns fluctuate.
The hill climber discovers synergistic settings across
multiple parameter layers of a HetNet. By contrast, less
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unified heuristics are prone to antagonistic decision-
making, which manifests in unpredictable behavior.

• A technique from natural computing [7] called Grammar-
based Genetic Programming (GP) [8], [9] is employed
to automatically synthesize schedulers that allocate spec-
trum on a millisecond timescale. Automation is highly
valued since costly manual fine tuning of human-designed
schedulers is often infeasible. GP outperforms a state of
the art benchmark because it tailors schedulers to the
deployment scenario. Performance comparisons with less
expressive linear models demonstrate the ability of GP to
construct useful feature representations.

• A novel objective function that enables flexible and fine-
grained control over fairness trade-offs is presented. Thus,
the operator can prioritize cell edge performance over
peak rates, or vice versa. Service differentiation is a
core feature of the LTE standard and the ongoing 5G
standardization [10].

• Semantic analysis of the hill climbing algorithm and
evolved schedulers reveals the nuanced yet intuitive
strategies that are discovered for allocating resources in
this dynamic environment.

The emerging virtualization paradigm [11], enabled by
software-defined networking [12] and abstracted hardware
with reprogrammable control (e.g. Nokia’s Airscale [13] tech-
nologies), will support an efficient implementation of the
proposed techniques. Virtualization facilitates the real-time
collection of measurement reports and the dissemination of
optimization decisions.

The paper is organized as follows. Section II formalizes the
optimization problem. Previous work on optimizing HetNets
is reviewed in Section III. Methods for optimizing the network
configuration and scheduling are developed in Section IV.
The simulation environment and experiments are described
in Section V. Section VI demonstrates better than human-
competitive performance across a range of network topologies
and traffic scenarios. The paper concludes with directions for
future work in Section VII.

II. PROBLEM DEFINITION

Downlink rates can be managed by configuring cells and
intelligently scheduling UEs. This section outlines the mecha-
nisms for load balancing, interference mitigation, and schedul-
ing that were specified in Release 10 of the 3GPP standard [5].

A. Load Balancing and Interference Mitigation in HetNets

The SC tier is typically underutilized in HetNets because
low-powered SCs struggle to offload UEs from stronger MCs.
Figure 1a depicts this load balancing issue in a toy deployment
with two SCs s1, s2 ∈ S and three MCs m1, m2, m3 ∈ M,
where S and M denote the sets of SCs and MCs in a
HetNet. Here, m2 is congested because a hotspot is embedded
within its coverage area. The underutilized SC s1 could
relieve congestion on m2 by absorbing UEs from the adjacent
hotspot. Now, s1 can extend its coverage area by increasing its
power Ps1 . However, s1 may be unable to expand its footprint
sufficiently before reaching maximum power.

Fig. 1. Toy HetNet containing three MCs with two embedded SCs.
(a) Unoptimized C . (b) Optimized C .

A range expansion mechanism has been proposed in
LTE-advanced to enable more efficient offloading onto the
SC tier [4], [5]. SCs s ∈ S can expand their footprint by
broadcasting a cell selection bias (βs) that UEs factor into their
attachment decisions. Hence, UE u attaches to cell c ∈ M∪S:

c = argmax
k

(signalu,k + βk), ∀ k ∈ M∪ S, (1)

where βk ≥ 0 [dB], ∀k ∈ S and βk = 0 [dB], ∀k ∈ M
since MCs do not implement range expansion. In Equation 1,
signalu,k is the signal strength (in [dBm]) that UE u receives
from cell k, and is given by:

signalu,k ← Pk + gu,k, (2)

where Pk is the transmitting power of k (in [dBm]) and gu,k

is channel gain (in [dB]) from k to u’s location.
The blue annuli in the optimized HetNet of Figure 1b

indicates the ‘expanded regions’ that form around s1 and s2

when they broadcast non-zero selection biases. Herein, UEs
attach to the SCs despite receiving stronger signals from the
overlaid MCs. Let Ac denote the set of UEs that attach to, and
hence receive packets from, cell c. Range expansion reduces
the load imbalance from |Am2 | − |As1 | = 9 in Figure 1a,
to just |As1 | − |Am2 | = 1 in Figure 1b. Similarly, s2 offloads
three UEs from m1 by using range expansion.

UEs in the expanded region at the edge of s1 and s2

will experience severe cross-tier interference from the over-
laid MCs, which transmit at higher power across the same
bandwidth. Channel conditions can be improved dramatically
at SC edges by forcing interfering MCs to mute periodically.
When a MC mutes we say that it executes an Almost Blank
Subframe (ABS) [4]. Note that subframes are 1 [ms] intervals
during which cells send packets to their attached UEs. There
are 40 subframes in a full frame Ft, where t ∈ N is a counter
for the number of elapsed frames.

Table I displays the seven ABS patterns that a MC can
execute during a frame. For instance, if the ABS ratio of m2

from Figure 1b is set to ABS ratio
m2

= 5/40, then m2 executes
the ABS pattern in the first row of Table I, such that, m2

mutes in 35 out of 40 subframes and transmits every eighth
subframe. In the toy HetNet, a low ABS ratio for m1 and m2

will reduce interference for UEs in the expanded regions of
their embedded SCs. In contrast, m3 should run a higher ABS
ratio as there are no SCs within its coverage area. Note that
SCs cannot mute so they are active in all subframes f ∈ Ft

(as indicated by the last row of Table I).
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TABLE I

ABS RATIOS AND PATTERNS FOR m ∈ M AND s ∈ S

In summary, the powers and biases of SCs1 can be mod-
ulated in order to balance load between cells, and severe
interference at SC edges can be mitigated by periodically
muting MCs. Hence, the ‘configuration’ C of a HetNet with
|S| SCs and |M| MCs is described by the array:

C =
[
P1, . . . , P|S|, β1, . . . , β|S|,ABS ratio

1 , . . . ,ABS ratio
|M|

]
,

where Ps ∈ [23.0 [dBm], 35.0 [dBm]], βs ∈ [0.0 [dB],
15.0 [dB]], and ABS ratio

m ∈ [5/40, . . . , 35/40].

B. Computing Downlink Rates Using Shannon’s Formula

The rate at which data is transmitted from cell c to a UE
u ∈ Ac during subframe f ∈ Ft depends (logarithmically) on
the signal to interference and noise ratio:

SINRu,f =
signalu,c,f ×ABSpattern

c,f

noise +
∑

k∈M∪S\c

signalu,k,f ×ABSpattern
k,f

,

(3)

where signalu,k,f is the signal strength (converted to Watts
here) that u receives from cell k ∈ M ∪ S during f ,
ABSpattern

k,f indicates whether k transmits or mutes during f ,
and noise = 4× 10−16 [Watts] approximates the background
electromagnetic noise. Shannon’s formula [14] gives the
instantaneous downlink rate (in [Mbps]) that u receives in f :

Ru,f = 20 [MHz]× schu,f ×Qu,f , (4)

where 20 [MHz] is the fixed bandwidth, 0.0 ≤ schu,f ≤ 1.0
is the proportion of the bandwidth that u is scheduled to
receive during f , and Qu,f = log2 (1 + SINRu,f ) is the
‘channel quality’ experienced by u in f . Shannon’s formula
gives an accurate approximation for LTE throughput in real
HetNets [15]. Finally, the (average) downlink rate for u over
frame Ft is given by

Ru = |Ft|−1
∑

f∈Ft

Ru,f . (5)

C. Optimizing the Network Configuration

The quality of service that a customer experiences depends
on the downlink rate Ru received by their UE. Extremely
low rates will result in significant packet losses, causing
applications to become unresponsive. High-rate UEs near cell

1MCs use a constant power of 43.3 [dBm] and do not implement biases.

centers can usually afford to liberate resources for the sake
of low-rate UEs at cell edges. In this paper, the terms ‘cell
edge’ and ‘cell center’ refer loosely to regions of low and
high SINR; they do not necessarily imply physical proximity
to the cell.

A UE’s received downlink rate (Equation 5) depends
implicitly on the HetNet configuration C through Equa-
tions 1, 2, and 3, which determine the UE-cell association,
received signals from serving and interfering cells, and the
signal to interference and noise ratio respectively. There-
fore, the quality of service experienced by customers can be
managed by optimizing the elements of C . Let U denote
the set of UEs that have been active in the HetNet during
25 frames sampled at random since the HetNet was last
reconfigured. Furthermore, let fconfig

({
Ru|u ∈ U

}
, γ

)
be an

objective function that integrates the downlink rates experi-
enced by u ∈ U to a scalar fitness, where γ ∈ R is a
tunable parameter. We develop a hill climbing algorithm for
configuring cells by adapting the elements of C in real time,
such that fconfig

({
Ru|u ∈ U

}
, γ

)
is maximized for a given

choice of γ. Along with a fully autonomous self-optimizing
framework, one of the main contributions of this paper is
a formulation for fconfig (· , γ) that enables the operator to
manage the trade-off between peak and cell edge rates by
simply adjusting γ.

D. Scheduling in the Time-Frequency Domain

HetNets are reconfigured infrequently because traffic pat-
terns change gradually, and frequent reconfigurations cause
undesirable ping-pong handovers. By contrast, channel quality
and demand fluctuate every few milliseconds. Downlink rates
can be managed on this much shorter timescale by intelligently
scheduling UEs in every 40 [ms] frame.

Shannon’s formula (Equation 4) states that the instantaneous
downlink rate (Ru,f ) received by UE u attached to cell
c in subframe f depends linearly on schu,f . Therefore, c
can devise a ‘schedule’ for frame Ft by setting the values
of schu,f , ∀(u, f) ∈ Ac × Ft, such that a fitness metric
fsch

({
Ru|u ∈ Ac

}
, γ

)
is maximized. As in Section II-C,

fsch (· , γ) could capture the operator’s desire for greater
fairness, or alternatively, higher peak rates depending on the
choice of γ. Then, the scheduling problem is described by the
following non-linear program:

maximize fsch

({
Ru|u ∈ Ac

}
, γ

)
,

such that (1)
∑

u∈Ac

schu,f = 1.0, ∀f ∈ Ft, and

(2) 0.0 ≤ schu,f ≤ 1.0, ∀(u, f) ∈ Ac ×Ft,

where constraint (1) ensures that the bandwidth is fully utilized
in every subframe, and constraint (2) states that an individual
UE receives between 0% and 100% of the bandwidth in a
given subframe.

III. PREVIOUS WORK

Densification is a dominant theme in the evolution
towards 5G [16] because co-channel HetNets are seen as
the most cost-effective paradigm for scaling with future
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demand [2], [3], [5], [17]. Technical challenges associated
with managing HetNets were reviewed in [4] and [18].
Aliu et al. [19] and Peng et al. [20] identified self-optimization
as a key capability since frequent manual reconfiguration of
dynamic HetNets is infeasible.

A. Configuring Multi-Layer HetNets

Okino et al. [21] confirmed that system capacity can be
increased by range expansion and interference mitigation.
However, the authors did not develop control algorithms for
implementing these mechanisms. Vasudevan et al. derived
an expression for adapting MC ABS ratios in response to
time-varying traffic. Fairness was improved over a baseline
that implemented fixed ABS ratios. Tall et al. [23] proposed
self-organizing algorithms for adapting SC selection biases to
balance load between MCs and SCs, and for setting MC ABS
ratios for managing interference. Deb et al. [6] developed
a more unified approach based on non-linear programming.
Their algorithm solves the coupled problems of optimizing
MC ABS ratios and UE-cell associations by setting SC biases.
Deb et al. [6] show that configuring multi-layer HetNets
is an NP-hard problem. Their algorithm relies on problem
relaxations that result in suboptimal solutions. Our goal is to
enable zero-touch control in HetNet optimization. Therefore,
the heuristic proposed in this paper is validated with respect to
a non-adaptive baseline that implements a static configuration.

B. Scheduling in HetNets

Simple scheduling strategies were utilized in the afore-
mentioned studies. For example, SC attached UEs are split
into two groups in [22]; UEs in a SC’s expanded region are
scheduled solely during protected ABSs, whereas UEs in the
SC center are scheduled only during non-ABSs. Weber and
Stanze [24] showed that this strategy is inferior to a “dynamic
scheduler” that can assign UEs to both ABSs and non-ABSs
on the basis of proportional fairness. Pang et al. [25] select
the set of ‘victim UEs’ u ∈ As that are scheduled in ABSs
using a dynamic programming method. All remaining UEs
are scheduled solely in non-ABSs. Jiang and Lei [26] perform
victim selection using a two player Nash bargaining game,
where ABSs and non-ABSs compete for u ∈ As. The victim
selection step in [25] and [26] is interleaved with brute force
search over all feasible ABS ratios. Thus, synchronous ABS
patterns and schedules are jointly optimized. López-Pérez and
Claussen [27] proposed a greedy algorithm for scheduling on
SCs that will serve as our benchmark. Their algorithm attempts
to equalize the downlink rates of the worst performing UEs
scheduled in ABSs and non-ABSs.

C. Natural Computing in Wireless Communications
Networks

Natural computing techniques [7] have been successfully
applied in wireless communications networks. Ho et al. [28]
and Hemberg et al. [29] evolved femtocell power con-
trol algorithms for coverage optimization using GP [30]
and Grammatical Evolution [9] respectively. Grammar-based
Genetic Programming [8] was employed to evolve scheduling

heuristics in [31] and references therein. Fagan et al. [32]
trained deep neural network schedulers using instructive
feedback from a Genetic Algorithm. Previous works by
Fenton et al. [33] also examined multi-layer optimization of
HetNets. The SC power, SC bias, MC ABS ratio, and
SC scheduling layers were addressed individually using
Grammar-based GP. However, performance was constrained
by limitations of the fitness function and inefficiencies due
to antagonistic control actions. In this paper, limitations of
previous work are overcome with:

1) novel parameterizable objective functions for better ser-
vice differentiation in LTE HetNets,

2) a feature-rich grammatical representation, and
3) a unified hill-climbing algorithm for robust optimization

of the network configuration.
In summary, most contributions in the literature address

individual layers of a HetNet. In this paper a unified approach
for joint multi-layer optimization is proposed. Hence, ineffi-
ciencies resulting from antagonistic decision-making by unco-
operative controllers are mitigated. The methods described in
the next section can be implemented in software, using Nokia’s
AirFrame data center solution [13] for online data collection,
optimization, and control action dissemination.

IV. METHOD

This section presents an algorithm for optimizing the HetNet
configuration C . A flexible framework for automatically
evolving schedulers using GP is then outlined, along with two
baselines and a state of the art benchmark scheduler.

A. Optimizing the Network Configuration

Optimizing HetNets is challenging because measurement
reports are noisy and incomplete, and the optimum settings
at a particular cell depend on how other nearby cells are
configured. For example, MC m2 in the toy HetNet of Figure 1
should run a high ABS ratio since the embedded SC s1 uses
range expansion. A static baseline network configuration CBL

is often implemented by operators in practice, where Ps =
35.0 [dBm], βs = 10.0 [dB] for all SCs s ∈ S, and
ABS ratio

m = 20/40 for MCs m ∈ M. However, static
settings are suboptimal since wireless traffic is highly dynamic.
Figure 2 displays the proposed hill climbing (HC) algorithm
for adapting C .

The elements of CHC are initialized to CBL (line 3), and they
are continuously adapted over time (line 4). Lines 11–23
describe how SC powers and biases are updated. For example,
when updating the power of SC 2 (P2), a Gaussian random
variate is added to CHC[2] (line 14). The fitness of this new
hypothesis for CHC is evaluated on line 16 as follows:

• Let U be the set of UEs that received data during
25 frames sampled since the HetNet was last reconfig-
ured, and let UFt be the set of UEs that were active in
one such frame Ft.

• Each u ∈ UFt reports the channel gains (gu,c) from
their serving and three most strongly interfering cells —
gains from all other cells cannot be measured, so they
are assumed to be −∞ [dB].
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Fig. 2. Optimizing C by hill climbing.

• The channel gains from frame Ft are arranged in a ‘chan-
nel gain matrix’ GFt of dimensions (|M|+ |S|)×|UFt |.
All 25 channel gain matrices form a training set T .

• Downlink rates are computed for the UEs u ∈ UFt in
each frame Ft by evaluating Equations 1, 2, 3, 4, and
5 as described in Section II-C. These computations are
carried out after cells have been configured using CHC.

• Hence, Equation 6 is evaluated for all u ∈ U to give the
fitness of CHC with the new setting for P2:

fconfig

({
Ru|u ∈ U

}
, γ

)
←

|U|∑
u′=1

(
loge

(−→
Ru′

))
× e

γ×u′
|U| ,

(6)

where
−→
R is an ordered array storing the downlink rates

∀u ∈ U , such that
−→
R 1 ≥

−→
R 2 ≥ . . . ≥ −→R |U|, and γ ∈ R

is a parameter specified by the operator for controlling
fairness trade-offs. Positive values of γ make Equation 6
sensitive to cell edge performance. Conversely, setting
γ < 0 will encourage solutions that increase peak rates.

The new setting for P2 is immediately accepted if it
improves the fitness of CHC (line 23). However, worse moves
are occasionally accepted in order to escape from local optima:
if the new setting is worse than the previous setting it is
accepted with probability p_accept (line 19), else the pre-
vious setting is retained (line 21). Ten hypothesis settings are

evaluated before proceeding to adapt another element of CHC.
Similarly, lines 24–35 describe a brute force search over the
seven allowed ABS ratios for MCs.

In a single iteration, steps × (2 × |S|) calls to Equation 6
(the fitness function) are needed to update all SC powers and
biases (lines 10–23), where steps = 10 different settings are
examined when updating a SC’s power or bias. Similarly,
7×|M| calls to Equation 6 are needed to update all MC ABS
ratios (lines 24–35), where seven different settings are possible
for each MC. Each call to Equation 6 requires downlink
rates to be computed for |U| UEs in the 25 different frames
represented by the current training set T . The downlink rate
for a single UE is given by Shannon’s formula as described
in Section II-B. The fitness evaluations can be parallelized so
that optimization in real time is feasible. For instance, it takes
roughly 90 seconds to complete 1 iteration on a 3.2 [GHz]
machine with 4 cores, in a HetNet with 63 SCs and 21 MCs
serving 2500 UEs. The algorithm requires only those data that
are available for decision making in real HetNets, namely the
channel gain matrices. It can be implemented on a centralized
server, or in a distributed manner by hill climbing locally on
cells. The training set is updated periodically (line 6), so that it
reflects the most recent traffic conditions. CHC can be pushed
out onto cells at any time. Frequent reconfigurations may be
beneficial if traffic conditions change rapidly. Here, cells are
reconfigured when the training set is updated (line 8).

B. Evolving Schedulers With Genetic Programming

This section describes how a schedule is produced for
SC s2 in the toy HetNet of Figure 1b. We first show how
measurement reports are mapped to a schedule for s2 using
a toy model that was evolved with GP. The fitness function
used to drive the evolutionary search is then described. Finally,
the GP algorithm itself is presented, along with two baseline
methods and the benchmark.

1) Generating Schedules: Consider some arbitrary frame
Ft in which three UEs receive packets from SC s2. Figure 3
illustrates how measurements of SINRreceived

u,f that are reported
by UEs u ∈ As2 during frame Ft−1 are mapped to the
schedule that s2 will execute in Ft. The schedule displayed
in the rightmost panel is computed as follows.

• Step 1: s2 first determines the ABS ratio of its most
strongly interfering MC

(
mint

)
— say m1 for the sake

of argument. Let ABS ratio
m1

= 25/40 so that m1 mutes in
subframes 1–3, 9–11, 17–19, 25–27 and 33–35 (row 5 of
Table I). Notice in Figure 3 that SINRreceived

∗,f is larger
in protected subframes during which m1 mutes.

• Step 2: s2 instructs its attached UEs to measure their
average SINR over subframes overlapping with the ABSs
and non-ABSs of m1. The UEs report back ‘wideband’
SINR’s that are rounded to the nearest decibel, and
clipped within the range [−5.0 [dB], 23.0 [dB]]. Wide-
band reports are clipped because packets are dropped if
the SINR < −5.0 [dB], and the UE’s hardware cannot
exploit values of SINR > 23.0 [dB].

• Step 3: s2 transforms wideband SINR’s to wideband
channel qualities: Qreported

u,f � log2

(
1 + SINRreported

u,f

)
.
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Fig. 3. SC s2 from Figure 1b computes a schedule for frame Ft based on measurement reports from the previous frame Ft−1; schGP
u,f specifies how

the bandwidth will be allocated among the UEs attached to s2

�
i.e. u ∈ As2

�
during each subframe f of the next frame Ft . Rows and columns represent

subframes and UEs respectively. UEs are sorted based on their average channel quality over Ft−1 and then assigned dummy IDs u′ ∈ [1, 2, . . . , |As2 |].

• Step 4: Statistical features are computed over the set
of wideband channel quality reports. Hence, an evolved
model maps these features to the schedule that s2 will
execute in frame Ft. The first two columns of Table II
define the features T1 ,T2 , . . . ,T13 that GP can utilize.
Equation 7 displays a simple model evolved by GP that
uses only three features. The process by which GP arrives
at an expression like Equation 7 will be outlined in
Section IV-B3. The model is executed ∀(u, f) ∈ As2 ×
[1, . . . , 8] yielding modelGP

u,f ∈ R. For instance, the output
for UE 2 in subframe 4 is given by

modelGP
2,4 = (T10 %T4 ) % (T4 − T1 )

= (7.65% 5.03) % (5.03− 2.59)
≈ 0.57, (7)

where the operators are defined in Table II. The color
coding in Equation 7 and Figure 3 highlight those channel
quality reports that are involved in computing modelGP

2,4 .
For instance, T4 = 5.03 is the maximum channel quality
reported by UE 2 over frame Ft−1.

• Step 5: The model’s outputs are scaled:

schGP
u,f ←

∣∣∣modelGP
u,f

∣∣∣
/ ∑

u∈As2

∣∣∣modelGP
u,f

∣∣∣.

Scaling ensures that constraints (1) and (2) from the non-
linear program in Section II-D are respected.

• Step 6: The partial schedule for subframes f ∈ [1, . . . , 8]
is duplicated fourfold to yield the complete schedule that
s2 will execute in f ∈ [1, . . . , 40] of Ft. It suffices to
compute a partial schedule because the ABS patterns
in Table I repeat in blocks of eight subframes.

• Step 7: Finally, s2 uses the schedule to decide how much
bandwidth UEs u ∈ As2 will receive in each subframe.
In the LTE standard, a 20 [MHz] block of bandwidth
is partitioned into 100 separate channels. The variable
schGP

u,f is interpreted as the number of channels allocated
to UE u in subframe f . Channels are then allocated
to UEs on a first come first served basis. For example
consider the schedule that is displayed in Figure 3.
In subframe f = 1, the first 73 channels are allocated
to UE 1, the next 16 channels are allocated to UE 2,

TABLE II

INTERPRETATION OF GRAMMAR ELEMENTS

and the remaining 11 channels are allocated to UE 3.
Orthogonal frequency division multiplexing (OFDM)
ensures that there is negligible intra-cell interference in
LTE HetNets, since orthogonal channels are allocated
to a cell’s attached UEs. However, each channel is
subject to interference from neighboring cells, if they
re-use the same channel. Evolved schedulers allocate
all 100 channels in every subframe. Therefore in any
subframe f , a UE will experience interference on their
allocated channels from all other SCs and MCs (if they
are not executing an ABS during f ) in the HetNet.

A schedule for a MC m ∈ M is computed in a similar
fashion. Now, T11 and T13 from Table II are interpreted
as u� ∈ [1, 2, . . . , |Am|] and ABSpattern

m,f respectively, and
schGP

u,f ← 0.00 during subframes in which m mutes.
The computations in Steps 3–7 are executed locally on

a cell, based on the wideband reports collected from UEs.
It typically takes under 1 [ms] to compute the schedule, which
is much less than the 40 [ms] duration of a single frame.

2) Fitness Evaluation: A schedule’s quality or ‘fitness’ is
given by

fsch
({

Ru|u ∈ Ac

}
, γ

)
←

|Ac|∑
u′=1

(
loge

(−→
Ru′

))
× e

γ×u′
|Ac| ,

(8)

where Ac is the set of UEs attached to cell c,
−→
R is an

ordered array storing the downlink rates ∀u ∈ Ac, such that−→
R 1 ≥

−→
R 2 ≥ . . . ≥ −→R |Ac|, and γ ∈ R is a parameter

specified by the operator for controlling fairness. The fitness
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Fig. 4. The schedule for SC s2 is evaluated by computing the downlink rates
Ru,f for u ∈ As2 using Shannon’s formula, and hence calling Equation 8.
The boxed cells indicate that UE 1 is scheduled in subframe 8 because the
reported SINR exceeds −5 [dB] (≈ 0.32). However, the SINR actually
received is less than −5 [dB] so packets are in fact dropped and RGP

1,8 = 0.00.

Fig. 5. The grammar (a) for evolving schedulers, and the derivation tree of
a GP individual (b) representing the model: (T10%T4)%(T4 − T1).

TABLE III

DOWNLINK RATES UNDER BL AND GP SCHEDULING

functions described by Equations 6 and 8 are identical, except
the summation is over U in the former and Ac in the latter.

For example, Figure 4 illustrates how Shannon’s formula
yields the downlink rates received by the UEs u ∈ As2 when
the schedule from Figure 3 is executed by s2. Similar calcula-
tions yield rates received under baseline scheduling. Table III
shows how the baseline represents an unfair allocation of the
bandwidth since

−→
RBL

3 >
−→
RBL

2 � −→
RBL

1 . In contrast, GP
improves fairness by granting cell edge UE 1 more bandwidth
than cell center UEs 2 and 3. Hence, the downlink rate for
UE 1 more than doubles relative to baseline and

−→
RGP

1 ≈−→
RGP

2 ≈ −→RGP
3 . Fairness ensures that all three UEs experience

an acceptable quality of service.
The parameter γ controls the sensitivity of Equation 8 to the

trade-off between cell edge and cell center performance. For
instance, fGP

sch = 304.1 > fBL
sch = 296.5 when γ = 4.0, reflect-

ing the fact that the model from Figure 5 produces a fairer
schedule than the baseline. Positive values for γ make Equa-
tion 8 sensitive to cell edge performance. Conversely, γ < 0
encourages the evolution of models that increase peak rates at
the expense of fairness.

3) The Genetic Programming Search Loop: A form of
evolutionary computation [30] called Grammar-based Genetic
Programming (GP) [8], [9], [34], [35] is employed to auto-
matically construct schedulers. GP mimics natural evolution

by evolving a population of individuals (i.e. schedulers) over
a fixed number of generations. A Backus-Naur-Form gram-
mar defines the space of solutions that can be explored
by GP. For example, Figure 5b shows how the model
(T10 %T4 ) % (T4 − T1 ) from Section IV-B1 is constructed
by expanding the start symbol 〈e〉 via a sequence of randomly
selected production rules from the grammar in Figure 5a.
The derivation tree is decoded yielding a symbolic expression
that can be evaluated in simulation. A GP run proceeds as
follows:

• Step 1: A population of 1000 randomly generated indi-
viduals is initialized. The following steps are then iterated
for 250 generations.

• Step 2: Each individual in the current population is
assigned a fitness value by computing the average of
Equation 8 over 250 training cases

(
i.e. matrix tuples(

Qreported , Qreceived
))

. Figure 4 shows how a schedule
is evaluated on a single case. Hence, 990 individuals are
selected for recombination using tournament selection.

• Step 3: In the recombination step, selected individuals
are randomly grouped into 495 pairs. Subtree crossover
is applied with a probability of 0.7 to each pair. A ran-
dom subtree is identified in each parent, and then these
subtrees are swapped. The two resulting children contain
genetic material from both parents.

• Step 4: The 990 children resulting from crossover are
all subjected to mutation. Subtree mutation replaces the
subtree rooted at a randomly identified non-terminal in
an individual’s derivation tree, with a new randomly
generated subtree.

• Step 5: All but the 10 fittest individuals (elites) in the
current population are replaced with the 990 children
resulting from crossover and mutation.

• Step 6: The fittest individual at generation 250 is
returned, and the algorithm terminates.

4) Logistic Model: It is hypothesized that GP constructs
useful high-order feature representations. GP’s ability to dis-
cover hierarchical structure is assessed by comparing it with
a logistic model (LM) of the form:

modelLM
u,f =

1
1 + e−(α1×T1+α2×T2+,...,+α13×T13 )

,

where α1, α2, . . . , α13 ∈ R are optimized by the Covariance
Matrix Adaptation Evolution Strategy [36].

5) Baseline: GP is also compared to a baseline (BL) round
robin scheduler that splits the bandwidth evenly among the
UEs attached to cell c (u ∈ Ac), such that schBL

u,f = 1/|Ac|
in all subframes. Our interference model simulates channel
fading in the time domain but not the frequency domain,
precluding comparisons with a proportional fair scheduler.
Industrial schedulers are complicated parametrized versions of
proportional fairness with very complex decision-making. The
simplification allows us to focus on the concept of using GP
as a tool for automating the scheduler design process.

6) Benchmark Algorithm: Finally, evolved schedulers are
benchmarked against a greedy algorithm adapted from [27].
The benchmark splits a SC’s attached UEs into two queues
overlapping and non-overlapping with the ABSs of the most
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Fig. 6. Three different HetNet deployments were simulated in Dublin City.
Each network contained 21 MCs (visible as large tri-sector lobes), but the
number of SCs (|S|) was varied. UEs are indicated by white dots. The number
of UEs simulated in each frame (|Uτ |) was larger in the denser topologies.
(a) Downtown dublin. (b) Sparse deployment. (c) Standard deployment.
(d) Dense deployment.

strongly interfering MC of the SC. UEs are iteratively
exchanged between queues in an attempt to equalize the
downlink rates of the worst performers in each queue type.
Intuitively, the benchmark sacrifices the best performing UEs
by unscheduling them in muted subframes, so that cell edge
UEs receive extra bandwidth during these quieter intervals.
The algorithm proposed in [27] is a suitable benchmark since it
captures the intuition underlying proportional fair scheduling.

V. EXPERIMENTS

Simulations were carried out in three different HetNet
topologies in order to assess:

• adaptive hill climbing (see Figure 2) for optimizing the
HetNet configuration C versus static baseline settings,

• performance gains from jointly optimizing C , and sched-
ules on MCs and SCs,

• schedulers evolved using GP versus strong baselines and
a state of the art benchmark algorithm, and

• how the trade-off between peak rates and fairness can be
controlled by adjusting γ.

A. Simulation Environment

Figure 6a displays the 3.24 square kilometer region of
Dublin City Center in which three different topologies were
simulated: a sparse HetNet with |M| = 21 MCs and |S| =
21 SCs serving 750 UEs per frame (Figure 6b), a standard
topology with (|M|, |S|) = (21, 63) serving 2500 UEs per
frame (Figure 6c), and a dense topology with (|M|, |S|) =
(21, 105) serving 7500 UEs per frame (Figure 6d). SCs were
placed at random locations on the map reflecting their ad-hoc
installation in real networks near traffic hotspots. MCs were

arranged on a regular hexagonal grid. Realistic channel gains
were computed by modeling the distribution of buildings,
streets, parks, and waterways. The parameters of the path loss
model are available in the supplementary materials. Our goal
is to validate the proposed zero-touch automation techniques
using only the core features of LTE HetNets.

The traffic model was designed to simulate the two main
properties of wireless demand in real HetNets. Firstly, UEs
request data from unpredictable locations in any given frame.
Secondly, hotspots materialize, move around, and dissipate
over time. Periods of activity hereafter referred to as ‘snap-
shots’ were simulated. A snapshot consisted of 200 frames
indexed by τ ∈ [1, 2, . . . , 200] that were sampled over thirty
minutes of activity in the HetNet. |S| hotspots were placed on
the map at the beginning of a snapshot. Half of the hotspots
were placed within 20 meters of randomly selected SCs, and
half were placed at random locations. The physical size, load,
and location of a hotspot HS was varied:

• The radius of HS was chosen randomly from the range
[10 [m], 40 [m]] at τ = 1 and τ = 200, and it was varied
linearly between these values during the thirty minute
snapshot.

• N (μHS (τ), 2) UEs were dropped into hotspot HS in
frame τ , where N is the normal distribution with mean
μHS (τ) and standard deviation σ = 2. In the sparse
HetNet, μHS was chosen randomly from the range [5, 15]
at τ = 1 and τ = 200, and it varied linearly between
these values during the snapshot. Similarly, μHS varied
linearly between [5, 30] and [5, 65] over a snapshot in the
standard and dense HetNets respectively. Thus, denser
HetNets contained more congested hotspots.

• Finally, HS moved between 0 [m] and 50 [m] from its
initial location in a random direction over a snapshot.

Hotspots were populated at the beginning of each frame. UEs
were then dropped at random until 750, 2500 and 7500 existed
on the map in the sparse, standard and dense HetNets respec-
tively. UEs were not permitted within 100 [m] of the map’s
edge where interference may be artificially low.

B. Evolutionary Learning of Schedulers

GP was employed to evolve tailored schedulers for MCs and
SCs in the deployment scenarios displayed in Figure 6. Runs
using γ = 4 and γ = −4 were executed in each scenario
to show how fairness and peak rates are improved across
a range of HetNet topologies and traffic scenarios. Sched-
ulers were evolved for γ ∈ [−4,−3, . . . , 4] in the standard
deployment in order to illustrate how fairness trade-offs are
controlled. A scheduler was evolved for a given scenario as
follows:

• Step 1: A value for γ was specified, and CHC was
optimized for a large number of different snapshots.

• Step 2: A training set for GP was generated by sam-
pling training cases from randomly selected cells in the
optimized HetNets. A single training case was the matrix
tuple

(
Qreported , Qreceived

)
from a SC (if evolving a SC

scheduler), or from a MC (if evolving a MC scheduler).
Training cases were extracted from optimized HetNets
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because evolved schedulers would be executed online in
pre-configured HetNets.

• Step 3: GP is a stochastic metaheuristic, so any single
run may converge to a poor local optimum. Therefore,
thirty independent runs of GP were executed. Individuals
were evaluated by computing the average of Equation 8
over all 250 training cases in the training set. Recall
section IV-B2 which described how an individual was
evaluated on a single training case.

• Step 4: The best model from the final generation of all
30 runs was saved. These highly fit solutions were then
evaluated on an unseen test set consisting of 250 test
cases in order to identify the single best model overall.

The logistic models (LMs) presented in Section IV-B4 were
trained by using CMA-ES [36] to optimize α1, α2, . . . , α13.
Identical training and validation sets were used in the runs
with GP and CMA-ES. The experimental parameters for all
evolutionary runs are available in the supplementary materials.

VI. RESULTS AND DISCUSSION

This section first illustrates how the hill climbing algorithm
outperforms static baseline settings by adapting a HetNet’s
configuration (C ) with respect to time-varying traffic patterns.
Evolved schedulers are benchmarked against a state of the art
algorithm [27], a strong logistic model, and a round robin
baseline scheduling method. The ability to control fairness
by tuning γ in Equations 6 and 8 is then assessed. Finally,
a semantic analysis reveals the intuitive strategies that GP dis-
covers for allocating bandwidth in the time-frequency domain.

A. Optimizing the Network Configuration

The hill climbing algorithm (Figure 2) was used to opti-
mize C in the sparse, standard and dense topologies. Pilot
experiments indicated that the best results are achieved when
the probability of accepting worse moves (p_accept ) is set to
zero. That is, greedy hill climbing gives the best performance.
Figure 7 displays the convergence of average fitness over
30 scenarios for the cases γ = 4 (solid lines, maximizing
fairness) and γ = −4 (dashed lines, maximizing peak rates).
At each parameter update, fitness is given by the ratio of
Equation 6 evaluated for the optimized configuration CHC,
and the static baseline settings CBL (red dashed line).

The abscissa indicates the iteration number on line 4 of the
algorithm in Figure 2, such that time increases from left to
right. An initial training set is formed by sampling 25 chan-
nel gain matrices during iterations −3 to 0 (green shaded
region). The algorithm begins optimizing CHC at iteration 0.
Performance rapidly improves compared to baseline during
iterations 0–3 as the SC powers and biases, and MC ABS
ratios are optimized. The training set is replaced at every
third iteration with 25 new channel gain matrices, which are
sampled during the preceding three iterations. Thus, CHC is
continuously adapted with respect to the most recent traffic
conditions. Sharp drops in fitness are visible when the training
set is updated, but CHC quickly adapts to the new reports.

The red shaded region in Figure 7 is a warm up period
during which the algorithm stabilizes. Iterations 12–24 in

Fig. 7. Average fitness over 30 different scenarios in three different HetNet
topologies for the cases γ = 4 (solid lines) and γ = −4 (dashed lines).

Fig. 8. Adaptation of CHC over 192 iterations in the sparse HetNet when
maximizing fairness (γ = 4). Three large hotspots containing 150 UEs move
smoothly across the map, and 550 UEs are dropped randomly in every frame.

gray shading are reserved as a test period in which the
scheduling techniques described in Section IV are assessed.
Schedulers are evaluated by executing them in 100 frames
(τ ∈ [100, 101, . . . , 200]) that are sampled uniformly over the
test period. Hence, downlink rates are computed for UEs that
receive data in the optimized and unoptimized HetNets, under
the various scheduling regimes. The following sections analyze
cumulative distribution functions of received downlink rates in
the various experimental set-ups.

Figure 8 visualizes how SC powers and biases, and the MC
ABS ratios are adapted during an extended snapshot (192 iter-
ations instead of 24) in the sparse deployment (Figure 6b).
Columns correspond to the elements of CHC. For example,
the first column indicates the power of SC 1 – deep red implies
P1 is at its maximum value of 35 [dBm], and deep blue
implies P1 takes the minimum allowed value of 23 [dBm].
Time increases vertically along the ordinate. The red hue in
columns 22–42 confirms that SCs implement positive cell
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Fig. 9. Optimizing the different HetNet layers in a sparse, standard, and dense deployment scenario. The legends indicate the scheduling method employed
on MCs and SCs respectively, and the method used to configure the HetNet. Fairness (i.e. cell edge throughput) is optimized in plots (a)–(c) by setting γ = 4
in the fitness functions, whereas peak rates are optimized in plots (d)–(f) by setting γ = −4. GP schedulers (black CDF) achieve higher cell edge and peak
rates than logistic models (green CDF). Cell edge rates are significantly improved by scheduling both MC and SC attached UEs (black VS blue CDFs).

TABLE IV

RANGE EXPANSION AND INTERFERENCE MITIGATION

selection biases. The light palette in columns 43–63 implies
that MCs mute periodically, by implementing ABS ratios less
than 40/40. Therefore, both range expansion and interference
mitigation are employed to improve fairness. All settings vary
throughout the snapshot as hotspots move around on the
map. SC powers are particularly variable. SCs are sometimes
powered down to 23 [dBm] in order to reduce intra-tier
and cross-tier interference to nearby loaded SCs and MCs
respectively.

Table IV displays the central tendencies of SC biases and
MC ABS ratios in the sparse, standard and dense deployments.
Selection biases are larger in less densified HetNets because
there are fewer SCs to offload UEs from the MC tier.

B. Multi-Layer Optimization

This section isolates the contribution to overall performance
from optimizing individual layers of a HetNet. The base-
line (BL), evolved (GP), logistic (LM) and benchmark (BM)
scheduling techniques are compared. Simulations were car-
ried out in the sparse, standard and dense topologies from
Figure 6. We restrict our attention to the cases when γ = 4
(maximizing fairness) and γ = −4 (maximizing peak rates).
Schedulers were executed in the HetNets after cells had been
configured using either the optimized settings (CHC), or base-
line settings (CBL). Hence, downlink rates

(
Ru

)
were com-

puted for all UEs that were active in 100 frames sampled

over the test periods (gray region in Figure 7) of 30 different
snapshots.

1) Cumulative Distribution Functions (CDFs): Figures 9a,
9b and 9c display CDFs of the downlink rates for various
set-ups relative to baseline (red dashed line), in the sparse,
standard and dense scenarios respectively, when fairness is
prioritized. The percentage increase of downlink rates ver-
sus baseline are plotted (ordinate) for all percentiles of Ru

(abscissa). The baseline implements baseline scheduling on
MCs and SCs (denoted by schBL in the legend) and the static
baseline configuration (CBL).

Cell edge rates (LHS of the plot) are improved relative
to baseline in all scenarios by optimizing only the network
configuration (cyan). Intelligent scheduling on SCs augments
the effect of optimizing the HetNet configuration (blue), and
further gains are observed when schedules on MCs are also
optimized (black). Joint optimization of the HetNet configu-
ration, and schedules on MCs and SCs, boosts far cell edge
rates by over 255%, 250% and 260% in the sparse, standard
and dense HetNets respectively. Figures 9d, 9e and 9f display
CDFs for the experiments using γ = −4. Here, peak rates
(RHS of the plot) are increased by over 240%, 300% and
340% in the sparse, standard and dense scenarios under joint
optimization of schedules and CHC. Notice that peak rates are
increased by sacrificing cell edge performance, and vice versa.

In all cases, intelligent scheduling in optimized HetNets
(black) dramatically outperforms; 1) baseline scheduling in
optimized HetNets (cyan), and 2) intelligent scheduling in
unoptimized HetNets (magenta). This result underscores the
need to optimize both the HetNet configuration and schedules.
Schedulers evolved using GP (black) outperform the logistic



LYNCH et al.: AUTOMATED SELF-OPTIMIZATION IN HETEROGENEOUS WIRELESS COMMUNICATIONS NETWORKS 429

TABLE V

1st PERCENTILE OF DOWNLINK RATES [Mbps]

TABLE VI

99th PERCENTILE OF DOWNLINK RATES [Mbps]

models (green) in all scenarios. Kolmogorov-Smirnov tests
confirm that the black and green CDFs are significantly
different at α = 0.01. Therefore, GP builds useful high-order
representations from minimal domain knowledge. Importantly,
GP (black) also outperforms the BM (gold) by achieving
higher cell edge rates in Figures 9a, 9b and 9c. The gains
are larger in denser HetNets containing more SCs.

2) Statistical Tests: Tables V and VI display average (over
30 snapshots) percentiles of the downlink rates when cell
edge and peak rates are maximized respectively. One-way
analyses of variance (ANOVAs) across the columns of both
tables indicate statistically significant differences between the
groups means (p = 0.000 for all tests with N = 30,
and 209 & 179 total degrees of freedom). Tukey’s post-hoc
tests, at a significance level of α = 0.05, suggest that 1st

percentile (in Table V) and 99th percentile (in Table VI) rates
are statistically significantly increased over baseline (red) by
optimizing only the HetNet configuration (cyan),2 or only the
schedules (magenta), or both (black).

In summary, the proposed methods scale well with
cell density and traffic load. Downlink rates are significantly
improved relative to a baseline that is used in practice. In fact,
cell edge and peak rates are increased by over 240% in all
simulated deployment scenarios by setting γ = 4 and γ = −4
respectively. GP outperforms less expressive LMs by tapping
structure in the training data that cannot be captured by a
linear combination of the features. Finally, GP is superior to
the benchmark in terms of both performance and flexibility.
Unlike the benchmark, GP generates tailored schedulers
that address the operator’s ad-hoc objectives for service
differentiation.

C. Benchmarking the Hill Climbing Algorithm

The hill climbing algorithm for optimizing the HetNet
configuration is benchmarked against self-organizing network

2Except when maximizing fairness in the dense scenario where p = 0.09.

Fig. 10. The hill climbing algorithm is compared with benchmark SONs
adapted from [23]. Downlink rates are computed in the standard scenario.
The hill climber is executed using γ = 0 in the fitness function, since the
benchmark is designed to maximize a proportionally fair objective.

algorithms (SONs) adapted from Tall et al. [23]. The bench-
mark consists of two components: a load balancing SON,
and a SON for setting Macro Cell ABS ratios. The load
balancing SON iteratively updates SC biases in order to
manage congestion on MCs. For example, consider a MC
m with an embedded SC s. Let ρ̂m be the number of UEs
currently attached to m, and let ρ̂expanded

s denote the load in
the expanded region of s. The bias of s is updated as follows:

βnew
s = βold

s + ε×
(
ρ̂m − ρ̂expanded

s

)
, (9)

where ε = 0.01 controls the update size. Intuitively, βs

increases if there are more UEs attached to m (i.e. the MC
is relatively congested), so that UEs are offloaded onto s.
Load balancing is a scalable heuristic for increasing capacity
because it reduces congestion on overloaded cells.

The ABS ratio of Macro Cell m is given by:

ABS ratio
m =

ρ̂m

ρ̂m +
(
2× ρ̂expanded

m

) , (10)

where ρ̂m is the average load on m, and ρ̂expanded
m is the

average number of UEs within the footprint of m, that are
also in the expanded regions of embedded SCs. Intuitively, m
is muted frequently (executes a lower ABS ratio) if there are
a relatively large number of vulnerable UEs in SC expanded
regions. The SONs described by Equations 9 and 10 are
executed continuously on SCs and MCs respectively.

Figure 10 displays the CDF plots that are achieved by the
hill climbing algorithm (HC) and benchmark SONs (BM).
Both techniques are afforded the same computational
budget. The hill climbing algorithm (dashed black) and
benchmark (dashed gold) achieve higher cell edge down-
link rates than the non-adaptive baseline (dashed red), when
baseline scheduling is employed. Downlink rates are further
increased if schedules are optimized using evolved models
(solid lines). The hill climbing algorithm outperforms the
benchmark because it optimizes SC powers, in addition to
SC biases and MC muting patterns. Unlike less flexible man-
ually designed algorithms, the proposed heuristic can easily
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Fig. 11. Managing fairness by optimizing CHC but not schedules. The legend
indicates the scheduling method that was employed on both MCs and SCs,
and the method used to configure the HetNet.

incorporate additional parameter layers. For example, mobility
could be managed by including a layer of time-to-trigger
parameters.

D. Tuning Performance

This section explores how fairness trade-offs are managed
in the proposed framework. We first study the case where
the HetNet configuration is optimized, but schedules are not
optimized (baseline schedules are executed on MCs and SCs).
The additional performance gains from intelligent scheduling
is assessed in the second subsection. Results are displayed for
simulations in the standard topology (Figure 6c).

1) Optimizing the HetNet Configuration With Baseline
Scheduling: Figure 11 displays CDFs of the downlink rates
for CHC versus CBL, where each curve corresponds to a
different setting for γ in Equation 6. As in the previous
section, downlink rates

(
Ru

)
were computed for all UEs

in 100 frames sampled over the test periods (gray region
in Figure 7) of 30 different snapshots.

Fine grained control over fairness can be exercised by
optimizing the HetNet configuration for different choices of γ.
Setting γ = 4 improves cell edge performance by over 30%
(black CDF). Conversely, setting γ < 0 lifts peak rates at
the expense of fairness. Consider the blue CDF corresponding
to the experiments with γ = −4. Here, cell edge rates are
sacrificed so that peak rates increase by 60% versus baseline.

2) Optimizing the HetNet Configuration and Schedules:
Figure 12 displays the CDFs realized after the HetNet is
configured by optimizing CHC for γ ∈ [−4,−3, . . . , 4], and
UEs are scheduled using models evolved by GP for the same
values of γ in Equation 8. Far cell edge rates are increased by
approximately 250% with γ = 4. Peak rates are increased by
over 340% with γ = −4. Therefore, scheduling has a dramatic
impact on performance in well configured HetNets.

Operators value the ability to control the trade-off between
cell edge and peak rates. High peak rates are often advertised
in order to attract customers, but cell edge performance
must be properly managed to maintain an acceptable quality
of service. The proposed techniques clearly enable flexible
service differentiation.

Fig. 12. Managing fairness by optimizing both CHC and schedules. The
legend indicates the scheduling method that was employed on both MCs and
SCs, and the method used to configure the HetNet.

Fig. 13. Expected channel qualities and schedules for SCs with ten attached
UEs. Each barchart is the average of 500 instances sampled from cells in
the standard scenarios after cells had been configured. UEs are ordered with
respect to received channel quality. For instance, UE 1 experiences the lowest
average channel quality of all u ∈ As, whereas UE 10 is closer to the cell
center. Only 8 out of 40 subframes are displayed for clarity. (a) Channel
Quality on SCs. (b) BM on SCs. (c) GP on SCs with γ = −4. (d) GP on
SCs with γ = 4.

E. Semantics

This section presents a semantic analysis of the bench-
mark (BM) and evolved (GP) schedulers. Figure 13a displays
a three dimensional barchart indicating expected channel qual-
ities Qu,f for UEs that attach to SCs serving exactly ten
UEs. Qu,f is higher in the first few subframes wherein more
interfering MCs mute (recall Table I).

Section VI-D showed how larger values of γ encourage
better fairness, while setting γ < 0 increases peak rates.
Figure 13c displays the strategy discovered by a sched-
uler evolved using γ = −4. Peak rates are increased by
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awarding high channel quality cell center UEs 7–10 most of
the bandwidth.

Figure 13d illustrates how the strategy changes for γ = 4.
Better fairness is achieved by heavily sacrificing cell center
UEs during subframes 1–4. Thus, cell edge UEs are granted
extra bandwidth when their channel quality is highest. Cell
edge UEs are largely unscheduled during subframes 6–8, when
their channel quality is lowest due to high MC interference.
Hence, cell center UEs are compensated for their sacrifice of
low-interference airtime during subframes 1–4.

Comparing Figures 13d and 13b we see that GP rediscovers
the BM’s essential strategy. Both methods implement a ‘Robin
Hood’ policy whereby the best-off UEs are sacrificed in
quieter subframes for the sake of fairness. Section VI-B
established that GP outperforms the BM. GP’s principle
advantage rests in its ability to automatically discover a
diverse range of tailored strategies.

VII. FUTURE WORK AND CONCLUSIONS

In this paper a unified and fully automated approach for
managing multi-layer software-defined HetNets was proposed.
The fundamental problems of optimizing UE-cell associations,
interference mitigation, and scheduling in the time-frequency
domain were addressed. The hill climbing algorithm for
optimizing SC powers and selection biases, and MC muting
patterns, increases 1st (cell edge) percentile downlink rates
by up to 71% compared to a non-adaptive baseline. This
result illustrates the importance of continually adapting cells
with respect to time-varying traffic patterns in highly dynamic
wireless communications networks. Schedulers evolved using
GP boost cell edge rates by at most 104% in unoptimized
HetNets. However, gains of up to 246% are achieved when
evolved schedulers intelligently allocate bandwidth in well-
configured HetNets. Therefore, the HetNet configuration and
schedules should be optimized jointly.

Evolved schedulers outperform a state of the art benchmark
because they are automatically tailored to the deployment
scenario. Interestingly, GP also outperforms less expressive
logistic models. Therefore, GP automatically synthesizes use-
ful representations from minimal domain knowledge. Semantic
analysis revealed that GP discovered nuanced yet intuitive
strategies for allocating bandwidth. Rigid one-size-fits-all
algorithms, such as the benchmark, cannot express the range
of behaviors that are accessible to GP.

One of the main contributions in this paper is a flexible
framework for fine-grained service differentiation. A novel
parameterized fitness function enables the operator to tune the
trade-off between cell edge and peak performance. When the
latter is prioritized, 99th percentile rates are increased by up
to 257%. The ability to accommodate bespoke objectives will
be key to monetizing the next generation of 5G HetNets.

Future work could investigate multi-channel scheduling,
whereby UEs simultaneously receive packets across LTE,
Wi-Fi and millimeter wave links. Zero-touch automation will
be essential in more complex multi-connectivity 5G archi-
tectures. Finally, the main contribution of this paper is a
proof of concept that genetic programming can automatically
generate better than human-competitive solutions for NP-hard

problems in software-defined HetNets. In future work the
approach could be leveraged to optimize 5G technologies like
dynamic TDD [37].
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