
We present an application of Grammatical Evolution to the
exploration of Lindenmayer systems. The resulting L-systems are
expressed in the Postscript language, and as such a Postscript
grammar was provided as input to the Grammatical Evolution
algorithm.

The system takes the form of an interactive evolutionary algorithm,
with a human-in-the-loop acting as the fitness function for the
generated L-systems.

The motivation for this research was to evolve a logo for the UCD
Natural Computing Research & Applications group, and to this end
the study was a success.

Grammatical Evolution
Grammatical Evolution (GE) is an evolutionary algorithm that can evolve computer programs in any language
[13][14][15][16][17][18], and can be considered a form of grammar-based genetic programming. Rather than
representing the programs as parse trees, as in GP [19][20][21][22][1], a linear genome representation is used.
A genotype-phenotype mapping is employed such that each individual's variable length binary string, contains
in its codons (groups of 8 bits) the information to select production rules from a Backus Naur Form (BNF)
grammar. The grammar allows the generation of programs in an arbitrary language that are guaranteed to be
syntactically correct, and as such it is used in the generative sense. The user can tailor the grammar to produce
solutions that are purely syntactically constrained, or they may incorporate domain knowledge by biasing the
grammar to produce very specific forms of sentences.

The grammar is used in a developmental process to construct a program by applying production rules, selected
by the genome, beginning from the start symbol of the grammar. In order to select a production rule in GE, the
next codon value on the genome is read, interpreted, and placed in the following formula:

Rule = c % r

where c is the codon integer value, r is the number of rule choices for the current non-terminal, and %
represents the modulo operator.

We presented an application of Grammatical Evolution to the exploration of L-
systems expressed in Postscript. The use of this approach resulted in the
discovery of a logo for the UCD Natural Computing Research & Applications
group.

Future work will include the continued development of Grammatical Evolution
in the context of interactive Evolutionary Computation for the exploration of
designs. In particular, Shape Grammars have proven a successful tool to
capture the essence of many designs including Coffee Makers, Cars and
Harley Davidson Motorbikes [29][30][31][32][33][34][35]. We are examining
their potential for combination with evolutionary search using GE.

Research we have undertaken in addressing the fitness evaluation bottleneck
for interactive evolutionary computation during sound synthesis [36] also has
relevance to evolutionary design with GE. We are investigating the extension of
the sweeping interface to GE to allow interpolation between individuals at
different levels of granularity.

An implementation of Grammatical Evolution in Java, GEVA, is available to
download from http://ncra.ucd.ie/geva and includes a demonstration of the
interactive evolution of L-systems.

[1] Koza, J.R., Keane, M., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G. (2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.
[2] Takagi, H. (2001). Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation. Proceedings of
the IEEE, Vol.89, No.9, pp.1275-1296.
[3] Bentley, P. (Ed.) (1999). Evolutionary Design by Computers. Morgan Kaufmann.
[4] Hornby, G., Pollack, J.B. (2001). The advantages of generative grammatical encodings for physical design. In Proc. of the Congress on
Evolutionary Computation, pp.600-607. IEEE Press.
[5] Hornby, G., Pollack, J.B. (2001). Evolving L-systems to generate virtual creatures. Computers and Graphics, 25(6):1041-1048. Elsevier.
[6] Hemberg, M. (2001). GENR8 - A Design Tool for Surface Generation. MSc Thesis. MIT.
[7] Hemberg, M., O'Reilly, U-M. (2004). Extending Grammatical Evolution to Evolve Digital Surfaces with Genr8. In LNCS 3003 Proc. of the
European Conference on Genetic Programming, pp.299-308. Springer.
[8] Hemberg, M., O'Reilly, U-M., Menges, A., Jonas, K., da Costa Goncalves, M., Fuchs, S. (2007). Genr8: Architect's experience using an
emergent design tool. In Art of Artificial Evolution. Springer.
[9] Gero, J.S. (1994). Evolutionary Learning of Novel Grammars for Design Improvement. AIEDAM, Vol.8, No.2, pp.83-94.
[10] Langdon, W.B. (2004). Global Distributed Evolution of L-system Fractals. In LNCS 3003 Proceedings of the European Conference on Genetic
Programming EuroGP 2004, pp. 349-358. Springer.
[11] Lindenmayer, A. (1968). Mathematical Models for Cellular Interaction in Development. Journal of Theoretical Biology, Vol. 18, pp. 280-315.
[12] Ortega, A., Dalhoum, A.A., Alfonseca, M. (2003). Grammatical evolution to design fractal curves with a given dimension. IBM Journal of
Research & Development, Vol. 47, No. 4, July 2003.
[13] O'Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer.
[14] O'Neill, M. (2001). Automatic Programming in an Arbitrary Language: Evolving Programs in Grammatical Evolution. PhD thesis, University of
Limerick, 2001.
[15] O'Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans. Evolutionary Computation. 2001.
[16] O'Neill, M., Ryan, C., Keijzer M., Cattolico M. (2003). Crossover in Grammatical Evolution. Genetic Programming and Evolvable Machines,
Vol. 4 No. 1. Kluwer Academic Publishers, 2003.
[17] Ryan, C., Collins, J.J., O'Neill, M. (1998). Grammatical Evolution: Evolving Programs for an Arbitrary Language. Proc. of the First European
Workshop on GP, 83-95, Springer-Verlag.
[18] Dempsey, I. (2007). Grammatical Evolution in Dynamic Environments. PhD Thesis. University College Dublin.
[19] Koza, J.R. (1992). Genetic Programming. MIT Press.
[20] Koza, J.R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press.
[21] Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D. (1998). Genetic Programming -- An Introduction; On the Automatic Evolution of Computer
Programs and its Applications. Morgan Kaufmann.
[22] Koza, J.R., Andre, D., Bennett III, F.H., Keane, M. (1999). Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufmann.
[23] O'Neill, M., Ryan, C. (2004). Grammatical Evolution by Grammatical Evolution. In LNCS 3003 Proc. of EuroGP 2004, pp.138-149. Springer.
[24] O'Neill, M., Brabazon, A. (2005). mGGA: The meta-Grammar Genetic Algorithm. In LNCS 3447 Proc. of EuroGP 2005, pp. 311-320. Springer.
[25] Hemberg, E., Gilligan, C., O'Neill, M., Brabazon, A. (2007). A Grammatical Genetic Programming Approach to Modularity in Genetic
Algorithms. In LNCS 4445 Proc. of EuroGP 2007, Springer.
[26] Hemberg, E., O'Neill, M., Brabazon, A. (2008). An investigation of meta grammars in Grammatical Evolution. Proc. of EuroGP 2008. Springer.
[27] Taft, E., Chernicoff, S., Rose, C. (1999). PostScript Language Reference. 3rd Edition. Addison-Wesley.
[28] Adobe Systems, Inc. (1985). Postscript Language Tutorial and Cookbook. Addison-Wesley.
[29] Stiny, G., Gips, J. (1972). Shape Grammars and the Generative Specification of Painting and Sculpture. In Proc. of IFIP Congress71, pp.
1460-1465. North-Holland.
[30] Stiny, G. (1991). The Algebras of Design. Research in Engineering Design. Vol.2, No.3, pp.171-181.
[31] Brown, K. (1997). Grammatical Design. IEEE Expert, March-April, pp.27-33.
[32] Koning, H., Eizenberg, J. (1981). The language of the Praire: Frank Llyod Wright's Praire Houses. Environment and Planning B, 8:295-323.
[33] Stiny, G., Mitchell, W.J. (1978). The Palladian Grammar. Environment and Planning B, Vol.5, pp.5-18.
[34] Knight, T.W. (1980). The generation of Hepplewhite-style chair back designs. Environment and Planning B, Vol.7, pp.227-238.
[35] Li, A. I-Kang. (2002). Algorithmic Architecture in Twelfth-Century China: The Yingzao Fashi. In Nexus IV: Architecture and Mathematics, pp.
141-150. Kim Williams Books.
[36] McDermott, J., Griffith, N., O'Neill, M. (2007). Evolutionary GUIs for Sound Synthesis. In LNCS 4448 EvoMUSART 2007. Springer.

Evolutionary Computation has demonstrated much potential for
Evolutionary Design (ED) producing solutions that are
competitive, and even superior to those developed by human
experts resulting in patentable inventions [1][2][3].
As such, the real world application domain of Design (in particular
Analog Circuit Design [1]) has been a proving ground for the
abilities of an artificial evolutionary process and has arguably led
to the first routinely, human-competitive form of Machine Learning.
ED is a challenging domain as it is often dynamic in nature due to
the ever changing preferences of the human users that judge the
aesthetic qualities of a design during evolution.

The combination of an EA coupled to a Grammatical,
Developmental Representation (Design Language) is a
particularly powerful and novel departure in recent years [4].
Research at this nexus of EC and a Grammatical Representation
include GENRE and Genr8 amongst others [4][6][7][8][9]. As is the
case in this study much of this research in grammar-based
Genetic Programming and in more traditional approaches to
Genetic Programming (e.g., [10]) has been undertaken using L-
systems.

Aristid Lindenmayer developed what are now known as L-systems
in 1968 to model the development of cells [11]. The L-systems are
a form of grammar, similar to Chomsky grammars, with the
difference that Lindenmayer grammars can apply production rules
in parallel. There have been a number of applications of genetic
programming approaches to the generation of various types of L-
systems most notably the Hemberg-Extended Map L-systems for
3-D surface generation [6], and using Grammatical Evolution to
design fractal curves with a specific dimension [12]. A convenient
way to generate and display L-systems is to use the Postscript
language, and in this study we use Grammatical Evolution [13]
to evolve Postscript programs that represent aesthetically
pleasing 2-D L-systems.

Postscript Logo Design Grammar
To evolve a logo design for the UCD Natural
Computing Research & Applications group we
wished to use a bio-inspired process that would
complement the philosophy of the group. We also
wished that the design itself would reflect the
natural world to some extent. As L-systems were
originally adopted to model cell growth and plant
development we considered this developmental
language appropriate. The input grammar adopted
in this study is presented below, and contains the
rules to generate an L-system grammar. The L-
system must then be expanded to produce a
design that can be evaluated by the human user.

<lsys> ::= <numrepeats> "{dup} repeat" <rules>"} \n
 if pop \n
 } def \n
 /rotangle"<rotangle> " def \n"

<rules> ::= <rules> <rules> <rules> <rules>
 | <Fcomplex>
 | <Xcomplex>
 | <fun>
 | <rotateop>

<rotateop> ::= + | -

<fun> ::= F | X

<Fcomplex> ::= <rotateop> F
 | <rotateop> F <rotateop> F

<Xcomplex> ::= <rotateop> X
 | <rotateop> X <rotateop> X

<rotangle> ::= 5 | 10 | 15 | 20 | 25 | 30
 | 35 | 40 | 45 | 50 | 55 | 60
 | 65 | 70 | 75 | 80 | 85 | 90

<numrepeats> ::= ?

The grammar generates an L-system coded in the
Postscript language [27][28]. All the evolved
grammars in this study take the form:

S -> X
X -> ?

where the angle of rotation of the turtle graphic
rotangle is evolved according to the non-terminal
<rotangle>, and the order (depth of expansion of
the L-system) of the system is 3 by default,
however, the interesting L-systems evolved in this
study were allowed to divide further and are
presented later on. To complete a valid postscript
file the header and footers presented (left) are
used to wrap the evolved L-System. A number of
PostScript operators are provided including dup
and pop which duplicate and pop the top item on
the stack respectively, the conditional operators if
and ne (not equals). The forward slash, /, is used
to denote user-defined variable and procedure
names along with the definition operator (def).
rlineto, newpath and moveto are path
construction operators that create a path, clear the
current path and move to a specific cartesian
coordinate respectively. The painting operator
stroke is used to paint the current path with the
current color and line width. F is a user-defined
procedure that creates a path for a line, and the
evolved procedure X determines how F's are
combined and rotated during the expansion of the
L-system.

Abstract Methods Results

Conclusions

References

Background

Michael OʼNeill & Anthony Brabazon
Natural Computing Research & Applications Group, University College Dublin

Evolving a Logo Design using Grammatical Evolution

UCD Natural Computing Research & Applications Group http://ncra.ucd.ie

110111001100101100110011011110110000001000101101

<expr> ::= <expr> <op> <expr>

 | (<expr> <op> <expr>)

 | <pre-op> (<expr>)

 | <var>

<op> ::= +

 | -

 | /

 | *

<pre-op> ::= sin

 | cos

 | tan

 | log

<var> ::= x

<expr> 220%4=0

203%4=3
0
1

3
2

51%4=3

<expr><op><expr>

<var><op><expr>

x<op><expr>

x*<expr>

220 203 51 123

0
1

3
2

0
1

3
2 2 45

123%4=3
x*<var>

x*x

pxpxpxpxpxpx
Postscript Header:
%!PS
/order 3 def %set the systems order
/START { X } def %start definition of X
/X { %let evolution fill in
dup 0 ne %the rest
{1 sub

Postscript Footer:
/F { %define F - draws a line
0 eq { 10 0 rlineto } if
} bind def
/- { rotangle neg rotate } bind def %rotation angle specified
/+ { rotangle rotate } bind def %by evolution
/paperx 8.5 72 mul def
/papery 11 72 mul def
/xx paperx 0.3 mul def
/yy 400 def
/thick 25 def
/factor { pop 2 } def
1 setlinejoin
1 setlinecap
newpath
xx yy moveto %centers in page, roughly
thick 1 1 order { factor div } for dup scale
90 rotate %initial angle
order START
stroke
showpage

http://ncra.ucd.ie/geva
http://ncra.ucd.ie/geva
http://ncra.ucd.ie
http://ncra.ucd.ie

