

ICSP

AppInventor
Lecture 3

Outline

● Lists
● Subroutines
● Communication protocols

Lists
● Abstract data structure that implements an ordered collection of

values, the same value can occur more than once

● The size of the list indicates the number of elements

● Elements can be accessed via their index

● Elements can be concattenated to the list

c 4 a 1

0 1 3

List:

Index:

List:

2

List example

•When the program starts
fruits will be added to the
fruit list.

•After the fruits are added
the Sprite will, as long as
there are fruits in the list,
say the name of the last
fruit in the list and then
remove it from the list

Queues & Stacks

• Queues and Stacks are two versions of lists with different
properties

• In a queue the first element that is added to the queue
(enqueue) is the first to be taken from it (dequeue) Called
First in, First Out (FIFO)

• E.g. The checkout line in a supermarket is a queue

• In a stack the last element to be put(pushed) on the stack is
the first to be taken off the top(popped) Called Last in, First
Out (LIFO)

• E.g. A pile of books can be described as a stack

Rock, Paper or Scissors

● Rules:
● Rock beats Scissors

● Scissors beats Paper

● Paper beats Rock

● Exercise: Code a Rock, Paper or Scissors game in Scratch:
● You make a choice of Rock, Paper or Scissors with the keys “r”, “p” or

“s”

● The computer makes a random choice Rock, Paper or Scissors

● The result is displayed

● (Bonus if you use a list, e.g. The values of “rock”, “paper” or
“scissors” are all player choices)

Subroutine

A subroutine (procedure, function, routine, method, or subprogram)

● Portion of code within a larger program that performs a specific task
and is somewhat independent piece of code.

– Used to structure the code

– Used when repeated calls need to be made

– Reduces the cost of developing and maintaining a large program
and increases its quality and reliability.

● Subroutines, collected into libraries, are an important mechanism for
sharing software

AppInventor Rock, Paper and
Scissors

● Create 3 buttons
● Rock
● Paper
● Scissors

● Display the result of your choice against a
random AI

● Think from Scratch

Between a rock, a paper or scissors

● A drama about communication in one act
● Sceen: A Rock, Paper, Scissors tournament
● Actors

● Clients – Participates in the tournament
– Name: Rick, likes to roll with Rock

– Name: Piper, likes to fold with Paper

– Name: Saussage, likes to run with Scissors

● Server – Handles the Rock, Paper, Scissors tournament
requests, respones and data storage
– Gets players name and responds with player results

– Responds with all stored player names if requested

– Stores player name and move

Communication

Server Database

Client 1

Client n

Request

Response

Request

Response

Query

Reply

Communication Protocols

● How do you make the devices (e.g. PC or
Smartphone) communicate with each other in
order to register Rock, Paper or Scissors
players, moves and results?
● Excersice: Write down in pseudocode how you

would handle the communication

Rock, Paper or Scissors -
Multiplayer

● The devices do not know that other devices exist. Therefore the webpage
serves the clients(apps) and stores information.
● A webpage has been set up http://icsp2011rps.appspot.com/

1.Register a name on the device
1. If there is no name registred notify that a name is missing

2.Else show the options “Store Move” and “Compete against an opponent”

2.Store a move on the server in the registered name
1.Play a move

2.Store the move on the server's data base

3.Compete against an opponent. The moves and opponents are stored on
the server

1.Chose an opponent listed in the server's database

2.Play a move

3.Calculate the result

4.Show the result

http://icsp2011rps.appspot.com/

Register a name

Chose to Store Move or Play
Opponent

Choose a Move

Internet Protocol Stack

● The lowest protocol deals with physical
interaction of the hardware. Every layer above
adds more features.

Protocol Layer

HTTP Application

TCP Transport

IP Internet

Ethernet Link

IEEE 802.3u Physical

Protocol specifications

● Requesting to store a player's move, SetValue
● Use the player name as the key

● Use the choice name as the value

● Requesting a list of opponents, GetValue
● Use the key “GET_OPPONENTS”

● Query returns a string value of opponent names joined by “&”

● E.g. Request “GET_OPPONENTS” returns “Rick&Piper”, i.e. Rick and Piper
are possible opponents

● Usefull blocks for handling data transfer is

– “split”, splits a string at a specific delimiter

● Requesting a player move, GetValue
● Use the player name as the key

● E.g. Request “Rick” returns the value of Rick's move

Initialize

● Define variables
● Assign values to

variables
● Create the initial

screen

Create Register Functionality

● Register button click
● Database

communication when
getting a value

● Notification

Store a Move

● Button choice
behaviour

● Storing move in data
base

Chose Opponents

● Methods after picking
● Calculating the result

Improvements of Rock, Papers or
Scissors

● Disallow duplicate names
● Improve security e.g. Database injection
● Handle invalid values
● Return player to start when a move is stored
● Remove moves which has been in a game

AppInventor Notes

AppInventor Links
●http://appinventor.googlelabs.com/learn/tutorials/index.html
●http://appinventor.googlelabs.com/learn/reference/index.html
●https://sites.google.com/site/theairepository/
●https://sites.google.com/site/appinventorresources/home/tutorial-topics
Sample Apps

● General user base: https://sites.google.com/site/theairepository/source-code
● University of San Francisco: http://sites.google.com/site/usfandroidmarket/

●Debugging in AppEngine use
● “do it”
● “watch”

●AppEngine API not completly updated
●Do not use “,” when returning values with TinyWebDB
●Developing on a local server the address is “http://10.0.2.2”

http://appinventor.googlelabs.com/learn/tutorials/index.html
http://appinventor.googlelabs.com/learn/reference/index.html
https://sites.google.com/site/theairepository/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

