
GEVA - Grammatical Evolution in Java

(v2.0)

Michael O’Neill, Erik Hemberg, Conor Gilligan,

Eliott Bartley, James McDermott, Anthony Brabazon

Natural Computing Research & Applications Group
University College Dublin

Ireland

June 13, 2011

Abstract

GEVA is an open source implementation of Grammatical Evolution

in Java developed at UCD’s Natural Computing Research & Applications

group. As well as providing the characteristic genotype-phenotypemapper

of GE a search algorithm engine and a simple GUI are also provided. A

number of sample problems and tutorials on how to use and adapt GEVA

have been developed.

1



Contents

1 Introduction 4

2 Grammatical Evolution 4

2.1 The Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Genotype-Phenotype Mapping Process . . . . . . . . . . . . . . . 6

3 GEVA Design Overview 9

4 Installation Instructions & Running out-of-the-box 10

4.1 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Distribution Contents 14

6 Tutorial 0: The Demo Problems 16

6.1 HelloWorld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 L-systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Paint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Even-5-Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.5 Santa Fe Ant trail . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.6 Symbolic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.7 Max Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.8 Royal Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.9 GUI Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.10 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Tutorial 1: Modifying Grammar Files 22

7.1 Modifying the HelloWorld Grammar . . . . . . . . . . . . . . . . 22
7.2 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Tutorial 2: Adding the Bonus Battleship Problem 24

8.1 Battleship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8.3 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 GEVA Bureaucracy . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.5 Building and running . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.5.1 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.6 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

9 Tutorial 3: Command Line Access 28

9.1 Changing Parameters . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1.1 Command Line . . . . . . . . . . . . . . . . . . . . . . . . 29
9.1.2 Properties File . . . . . . . . . . . . . . . . . . . . . . . . 30

9.2 Changing the Problem/Fitness Function . . . . . . . . . . . . . . 31
9.3 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



10 Advanced Tutorials 33

10.1 Tutorial 4: How to Initialise a Population . . . . . . . . . . . . . 33
10.1.1 Running the code . . . . . . . . . . . . . . . . . . . . . . . 36

10.2 Tutorial 5: How to Construct a Simple Evolutionary Algorithm . 37
10.2.1 Running the code . . . . . . . . . . . . . . . . . . . . . . . 39

10.3 Tutorial 6: How to Add a New Fitness Function . . . . . . . . . 42
10.3.1 A new fitness function . . . . . . . . . . . . . . . . . . . . 42
10.3.2 Joining the Dots . . . . . . . . . . . . . . . . . . . . . . . 43
10.3.3 Collecting Statistics . . . . . . . . . . . . . . . . . . . . . 45
10.3.4 Running the code . . . . . . . . . . . . . . . . . . . . . . . 45
10.3.5 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11 Conclusions 47

3



1 Introduction

Grammatical Evolution in Java (GEVA) was developed at UCD’s Natural Com-
puting Research & Applications group1 [14]. It is an open source implementation
of Grammatical Evolution (GE) [30, 28, 29, 39] released under GNU GPL v3.0,
which provides a search engine framework in addition to a simple GUI and the
genotype-phenotype mapper of GE.

This report serves as an introduction to the GEVA software providing guide-
lines on its installation and use. The software comes in two main parts, a simple
GUI and the main GEVA package. The GUI provides a mechanism to explore
the software and understand how it operates but use of the underlying GEVA
can be accessed through a command line interface to allow for scripting. In
this release some simple demonstration problems are provided to assist the user
to gain an understanding of the code while reading the accompanying tutorials
which are provided in this document and on the code’s website [14].

Following a brief introduction to Grammatical Evolution in Section 2, we
describe the design of GEVA in Section 3, provide installation instructions in
Section 4, and an introductory tutorials on its use in Sections 6, 7, 8, 9, followed
by more advanced programming tutorials in Section 10.

2 Grammatical Evolution

Grammatical Evolution (GE) (e.g., [30, 28, 4, 12, 13, 29, 39, 31, 19, 7, 10, 1, 32])
is a grammar-based form of Genetic Programming [38]. It marries principles
from molecular biology to the representational power of formal grammars. GE’s
rich modularity gives a unique flexibility, making it possible to use alternative
search strategies, whether evolutionary, deterministic or some other approach,
and to radically change its behaviour by merely changing the grammar supplied.
As a grammar is used to describe the structures that are generated by GE, it is
trivial to modify the output structures by simply editing the plain text grammar.
This is one of the main advantages that makes the GE approach so attractive.
The genotype-phenotype mapping also means that instead of operating exclu-
sively on solution trees, as in standard GP, GE allows search operators to be
performed on the genotype (e.g., integer or binary chromosomes), in addition to
partially derived phenotypes, and the fully formed phenotypic derivation trees
themselves.

2.1 The Grammar

When tackling a problem with GE, a suitable BNF (Backus Naur Form) gram-
mar definition must initially be defined. The BNF can be either the specification
of an entire language or, perhaps more usefully, a subset of a language geared
towards the problem at hand.

1http://ncra.ucd.ie

4



In GE, a BNF definition is used to describe the output language to be
produced by the system. BNF is a notation for expressing the grammar of a
language in the form of production rules. BNF grammars consist of terminals,
which are items that can appear in the language, e.g. binary boolean operators
and, or, xor, and nand, unary boolean operators not, constants, true and false

etc. and non-terminals, which can be expanded into one or more terminals and
non-terminals.

For example the grammar below can be used to generate boolean expressions,
and <expr> can be transformed into one of three rules. It can become either
( <expr> <biop> <expr> ), <uop> <expr>, or <bool>. A grammar can be
represented by the tuple {N, T, P, S}, where N is the set of non-terminals, T
the set of terminals, P a set of production rules that maps the elements of N to
T , and S is a start symbol which is a member of N . When there are a number
of productions that can be applied to one element of N the choice is delimited
with the ‘|’ symbol. For example

N = { <expr>, <biop>, <uop>, <bool> }

T = { and, or, xor, nand, not,

true, false, (, ) }

S = { <expr> }

And P can be represented as:

(A) <expr> ::= ( <expr> <biop> <expr> )

| <uop> <expr>

| <bool>

(B) <biop> ::= and

| or

| xor

| nand

(C) <uop> ::= not

(D) <bool> ::= true

| false

The code produced will consist of elements of the terminal set T . The
grammar is used in a developmental approach whereby the evolutionary process
evolves the production rules to be applied at each stage of a mapping process,
starting from the start symbol, until a complete program is formed. A complete
program is one that is comprised solely from elements of T .

In GEVA the BNF definition is comprised entirely of the set of production
rules, with the definition of terminals and non-terminals implicit in these rules.
The first non-terminal symbol is by default the start symbol.

5



As the BNF definition is a plug-in component of the system, it means that
GE can produce code in any language thereby giving the system a unique flex-
ibility. For the above BNF grammar, Table 1 summarises the production rules
and the number of choices associated with each.

Table 1: The number of choices available from each production rule.
Rule

Number Choices

A 3
B 4
C 1
D 2

2.2 Genotype-Phenotype Mapping Process

The genotype is used to map the start symbol as defined in the Grammar onto
terminals by reading codons to generate a corresponding integer value, from
which an appropriate production rule is selected by using the following mapping
function:

Rule = c mod r

where c is the codon integer value, and r is the number of rule choices for the
current non-terminal symbol.

Consider the following rule from the given grammar, i.e., given the non-
terminal <boolop>, which describes the set of boolean operators that can be
used, there are four production rules to select from. As can be seen, the choices
are effectively labelled with integers counting from zero.

(B) <boolop> ::= and (0)

| or (1)

| xor (2)

| nand (3)

If we assume the codon being read produces the integer 6, then

6 mod 4 = 2

would select rule (2) xor. That is, <boolop> is replaced with xor. Each time a
production rule has to be selected to transform a non-terminal, another codon
is read. In this way the system traverses the genome.

During the genotype-to-phenotype mapping process, it is possible for in-
dividuals to run out of codons, and in this case the wrap operator is applied

6



which results in returning the codon reading head back to the first codon in
the individual. As such codons are reused when wrapping occurs. This is quite
an unusual approach in evolutionary algorithms as it is entirely possible for
certain codons to be used two or more times. This technique of wrapping the
individual draws inspiration from the gene-overlapping phenomenon that has
been observed in many organisms [24]. GE works with or without wrapping,
and wrapping has been shown to be useful on some problems [28], however, it
does come at the cost of introducing functional dependencies between codons
that would not otherwise arise.

In GE each time the same codon is expressed it will always generate the
same integer value, but depending on the current non-terminal to which it is
being applied, it may result in the selection of a different production rule. This
feature is referred to as intrinsic polymorphism. What is crucial however, is that
each time a particular individual is mapped from its genotype to its phenotype,
the same output is generated. This is the case because the same choices are
made each time. It is possible that an incomplete mapping could occur, even
after several wrapping events, and typically in this case the mapping process is
aborted and the individual in question is given the lowest possible fitness value.
The selection and replacement mechanisms then operate accordingly to increase
the likelihood that this individual is removed from the population.

An incomplete mapping could arise if the integer values expressed by the
genotype were applying the same production rules repeatedly. For example,
consider an individual with three codons, all of which specify rule 0 from below.

(A) <expr> ::= (<expr> <biop> <expr>) (0)

| <uop> <expr> (1)

| <bool> (2)

Even after wrapping, the mapping process would be incomplete and would
carry on indefinitely unless terminated. This occurs because the nonterminal
<expr> is being mapped recursively by production rule 0, i.e., it becomes
( <expr> <biop> <expr> ). Therefore, the leftmost <expr> after each ap-
plication of a production would itself be mapped to a
( <expr> <biop> <expr> ), resulting in an expression continually growing as
follows: ( ( <expr> <biop> <expr> ) <biop> <expr> ) followed by
( ( ( <expr> <biop> <expr> ) <biop> <expr> )

<biop> <expr> )

and so on.
Such an individual is dubbed invalid as it will never undergo a complete map-
ping to a set of terminals. For this reason an upper limit on the number of
wrapping events that can occur is imposed. During the mapping process there-
fore, beginning from the left hand side of the genome codon integer values are
generated and used to select rules from the BNF grammar, until one of the
following situations arise:

1. A complete program is generated. This occurs when all the non-terminals

7



in the expression being mapped are transformed into elements from the
terminal set of the BNF grammar.

2. The end of the genome is reached, in which case the wrapping operator
is invoked. This results in the return of the genome reading frame to the
left hand side of the genome once again. The reading of codons will then
continue, unless an upper threshold representing the maximum number of
wrapping events has occurred during this individual’s mapping process.

3. In the event that a threshold on the number of wrapping events has oc-
curred and the individual is still incompletely mapped, the mapping pro-
cess is halted, and the individual is assigned the lowest possible fitness
value.

To reduce the number of invalid individuals being passed from generation to
generation various strategies can be employed. Strong selection pressure could
be applied, for example, through a steady state replacement. One consequence
of the use of a steady state method is its tendency to maintain fit individuals
at the expense of less fit, and in particular, invalid individuals. Alternatively, a
repair strategy can be adopted, which ensures that every individual results in a
valid program. For example, in the case that there are non-terminals remaining
after using all the genetic material of an individual (with or without the use
of wrapping) default rules for each non-terminal can be pre-specified that are
used to complete the mapping in a deterministic fashion. Another strategy is
to remove the recursive production rules that cause an individual’s phenotype
to grow, and then to reuse the genotype to select from the remaining non-
recursive rules. Also, by adopting a ramped-half-and-half initialisation based
on derivation trees, it is possible to ensure that all genotypes in the initial
population are completely mapped sentences in the target language. From this
start state it can be difficult for invalid genotypes to propagate during a run
with strong selection pressure, and also genetic operators which manipulate the
derivation tree [18] can be used to ensure the generation of completely mapped
sentences.

There have been a number of extensions to GE in recent years in terms of
the grammars adopted, the search engine and search operators employed, and
even variants on the mapping process itself (e.g., see the following sources [31,
4, 13, 32, 12, 19, 5, 6, 20, 34, 21, 35, 26]). 2

2Additional information on Grammatical Evolution is available from
http://www.grammatical-evolution.org

8



3 GEVA Design Overview

The software comes in two main components, namely

1. GUI

2. GEVA

The GUI (GUI.jar) provides a simple interface to assist in an initial ex-
ploration of the software. In reality the GUI simply invokes the main GEVA
package (GEVA.jar) using the selected parameter set. The more advanced user
can simply skip the GUI and work directly with the command line interface
with GEVA.jar, thereby accessing the full unrestricted suite of features that
exist in the current release. The GUI also provides a simple graphing utility,
which is provided for informational purposes to aid the user in understanding
the behaviour of GEVA.

Figure 1: Modular components of Grammatical Evolution.

An overview of the major components of Grammatical Evolution are pro-
vided in Fig. 1.

9



4 Installation Instructions & Running out-of-
the-box

1. A working installation of Java is required (at least Java 1.5).

2. Download the latest version of GEVA [14] from http://ncra.ucd.ie/geva.

3. Unzip the distribution, and navigate into the GEVA-v2.0/ directory.

4. To run out-of-the-box (i.e., in GUI mode) either

(a) Double-click the GEVA_GUI.jar or

(b) in a shell type java -jar GEVA_GUI.jar

Figure 2: The GEVA Splash screen.

A GEVA splash screen will be displayed first (see Fig. 2) followed by the main
GUI window which allows you to select the problem and associated parameters.
A number of sample problems are provided in the release. Running out-of-the-
box GEVA uses the HelloWorld example problem by default. A screenshot of
what the user sees is presented in Fig. 3. In this problem the goal is to match
all the characters in a target character string (“geva”).

To run this default problem with the example settings simply click on Run

and the following screen will appear (see Fig. 4). You will see a fitness plot
generated as the run progresses, and in this problem a solution tends to be
found quite quickly so more than likely you will just see the fitness plot graph
of the finished run. It is possible to modify the graph by checking the Visible

10



Figure 3: GEVA GUI screenshot for the default HelloWorld problem. The goal
is to rediscover the string “geva”

11



box beside each data item, and it is also possible to change the colour associated
with each data item. The GUI allows the user to plot a number of additional
GE attributes by selecting the appropriate Tab (Codon, Invalids and Other

are the current options). Under Codon it is possible to plot the average physical
length of each individual in the population in terms of number of codons, and
it is also possible to plot the average number of Used/expressed codons (i.e.,
codons that are actually used during the generation of the phenotype/solution).
At any time it is possible to scale the graphs by right-clicking and dragging the
graph along either axis. If you wish to save the resulting graph click on the
Save Image button and a selection of file formats may be chosen from.

Figure 4: GEVA GUI screen-shot of the graphing feature for the default Hel-
loWorld problem.

If you click on the Console tab you will see the following window, Fig. 5.
This window simply captures the text dump that GEVA.jar generates upon
execution and includes a print of the parameter settings, and the phenotype
and fitness of the best solution ever found along with the total time GEVA was
running for (in milliseconds) and the total number of generations.

4.1 Next Steps

A description of the demonstration problems is presented in Section 6. It is rec-
ommended that the new user moves directly to this section (Tutorial 0). To gain
a deeper understanding of how to modify the grammar (Tutorial 1), add your
own simple problem (Tutorial 2), and use the command line interface (Tutorial
3) the more adventurous user can skip to Sections 7, 8 and 9 respectively. If you
want to jump straight into the deep end and get your hands dirty coding your

12



Figure 5: GEVA GUI screen-shot of the console feature for the default Hel-
loWorld problem.

own search engine the more advanced user can visit the Advanced Tutorials in
Section 10. Section 5 follows, which details the contents of the distribution.

13



5 Distribution Contents

In the main distribution directory you will see the following files:

Figure 6: GEVA main directory listing.

bin/ contains the executables GEVA.jar and GUI.jar and associated libraries.

build.xml is the build file used by ant to rebuild the entire distribution after modi-
fying any of the source files. Seperate build files are available for the GUI
and GEVA components in their respective directories.

COPYING contains the text of the GNU GPL version 3.

GEVA/ contains the source code, documentation, and build files for the GEVA
code.

GEVA GUI.jar is the main point of entry to execute the GUI version of GEVA. It invokes
GUI.jar which is contained in the bin/ directory.

GUI/ contains the source code, documentation, and build files for the GUI code.

gui.config is used to initialise the configuration of the GUI so that it knows where
GEVA.jar and the variours property and grammar files are located.

LICENSE provides the Copyright notice and Licence information for the distribution.

param/ contains two directories, Grammar/ which contains the grammar files for
the demonstration problems, and the corresponding example properties

14



files are contained in Parameters/. Also contained here are two addi-
tional configuration files for the GUI mode. These files tell the GUI what
parameter and grammar files to associate with each demonstration prob-
lem (ff.config), and graph.config sets up some default settings for the
graphing utility.

15



6 Tutorial 0: The Demo Problems

From the GUI using the drop down Properties menu item you can change the
problem used. The appropriate grammar, fitness function and example param-
eter settings are automatically set for you when you change between a problem
using the Properties menu.

When GEVA GUI.jar is run for the first time it runs the HelloWorld problem
by default. A description of this and the other demonstration problems now
follow.

6.1 HelloWorld

In this simple problem the goal is to match the target string “geva”. Fitness
is simply a count of the number of characters of the candidate solution which
match the target string. As we are using search based upon minimisation,
smaller fitness values are better, so we adjust the match count by subtracting
it from the total character count (n) of the target string.

Fitness = targetStringLength−

n∑

i=1

(targetChar[i]− predictedChar[i])

The example grammar (letter grammar.bnf) adopted simply generates
strings of characters. The grammar is as follows:

<string> ::= <letter>|<letter><string>

<letter> ::= <vowel>|<consonant>|<space>

<space> ::= _

<vowel> ::= a|o|u|e|i

<consonant> ::= q|w|r|t|y|p|s|d|f|g|h|j|k|l|z|x|c|v|b|n|m

A candidate solution is constructed beginning from the embryonic <string>
symbol. A <string> can be replaced with either a <letter> or with <letter><string>.
This means an output string can be anything from a single character to multiple
characters.

The <letter> symbol is used to determine which characters are included in
the output string. These can be one of three items, a <vowel>, a <consonant> or
a <space>. A space is represented by the underscore character , and this is the
only possible replacement for a <space> symbol. It is therefore not necessary
to consult the genome for a codon value in that instance. There are however
five possible replacement choices for a <vowel> and twenty one choices for a
<consonant>.

Therefore, evolution has to search for a string of the correct length, and a
string that contains the right sequence of characters to match the target string
(“geva”). Click Run to see how GEVA performs on this problem.

16



6.2 L-systems

To run the L-system problem select the LSystem.properties option from the
Propertiesmenu, and the example settings for an L-system demo are provided.
This is an interactive form of GE that presents the user with the current popula-
tion of L-systems (with duplicate phenotypes overlaid to save space). The user
then determines which L-systems will become parents to create the next gener-
ation and/or can decide to purge individuals from the population (see Fig. 7).
To create the next generation, select only those individuals that you want to
become a Parent or to Purge, and click on Generate. Individuals that are not
selected for either becoming a parent or purging are not used in the creation
of the next generation of solutions. Purge forces that individual to be deleted
from the population.

To find out more about L-systems the reader is referred to Prusinkiewicz’s
Algorithmic Beauty of Plants [37].

Figure 7: GEVA GUI screenshot of the L-system demo problem.

Evolution in this case is driven by the user where the user directly acts as
the selection operator determining which L-systems becomes parents to create
the next population of candidate solutions. The default grammar adopted is
LSys 1.bnf and is detailed below:

<Sys> ::=<n><angle><expr>

<n> ::=2|3|4

17



<angle> ::= 20.0|22.5|25.0|27.5

<expr> ::= <expr> <op> <expr> | [<expr> <op> <expr>] | <var>

<op> ::= +|-

<var> ::= F

The start symbol from which the L-system grammar is constructed is <Sys>.
Evolutionary search determines the depth of expansion (<n>), the angle (<angle>)
and production rules of each L-system. In this simple case we have restricted
the depth of expansion to be either 2, 3 or 4, and limited the angles to four pos-
sibilities (20.0, 22.5, 25.0 and 27.5 degrees). When the symbol F is encountered
a line is drawn. The symbols corresponding to <op> determine the angle the
next line is drawn at.

A second L-system grammar file, LSysEx 1.bnf, is provided as an example.
This is similar to the grammar adopted in the generation of the NCRA group
logo [34]. To activate the use of this grammar simply select it from the Grammar
drop down menu in the GUI (see the menu item highlighted in blue in Fig. 8).

Figure 8: Parameter settings of the L-system demo problem with the grammar
choice sub-menu highlighted in blue. LSys 1.bnf is currently in use. Select
LSysEx 1.bnf to create slightly more complicated L-systems.

18



6.3 Paint

The Paint toy problem (Paint.properties), is provided which attempts to
evolve the most complex colour picture possible where complexity refers to di-
versity of pixels. A screen dump of Paint in action is given in Fig. 9. The
left-hand side of the picture continuously displays each individual in the pop-
ulation with the right-hand side presenting the most complex picture found
to-date.

Figure 9: GEVA GUI screen-shot of the Paint demo problem.

The grammar adopted for the Paint problem is paint.bnf and is as follows:

<paint> ::= <intensity> <intensity> <intensity>

| <paint> <intensity> <intensity> <intensity>

<intensity> ::= <digit><digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Each <digit> represents a color, and each painting is comprised of at least six
colours.

6.4 Even-5-Parity

This is the classic benchmark problem in which evolution attempts to find
the five input even-parity boolean function. The grammar adopted here is
efp grammar gr.bnf:

<prog> ::= <expr>

<expr> ::= <expr> <op> <expr> | ( <expr> <op> <expr> )

| <var> | <pre-op> ( <var> )

<pre-op> ::= not

<op> ::= "|" | & | ^

<var> ::= d0 | d1 | d2 | d3 | d4

Select EvenFiveParity.properties from the Properties menu to run this
problem. The optimal fitness is obtained when the correct output is generated
for each of the 32 test cases.

6.5 Santa Fe Ant trail

Select SantaFeAntTrail.properties from the Properties menu. The objec-
tive here is to evolve a program to control the movement of an artificial ant on a
toroidal grid of size 32 by 32 units. 89 pieces of food are located along a broken
trail, and the ant has 600 units of energy to find all the food. A unit of energy is

19



consumed when the ant uses one of the following operations: move(), right()
or left(). The ant also has the capability to look ahead into the square directly
facing it to determine if there is food present or not. The example grammar
adopted here, sf grammar gr.bnf is as follows:

prog> ::= <code>

<code> ::= <line> | <code> <line>

<line> ::= <condition>\n | <op>\n

<condition> ::= if(food_ahead()==1) { <opcode> } else { <opcode> }

<op> ::= left(); | right(); | move();

<opcode> ::= <op> | <opcode> <op>

The ideal fitness is obtained when the ant has consumed all 89 pieces of food.
In GEVA v1.2 some added trail problems were included, being the Los Altos
Trail and the San Mateo Trail both of which use the Santa Fe Trail grammar
above.

6.6 Symbolic Regression

Select SymbolicRegression.properties from the Properties menu. The
classic quartic function is used here x + x2 + x3 + x4 with 20 input-output
test cases drawn from the range -1 to 1. Fitness is simply the sum of the errors,
and an uncomplicated grammar adopted:

<expr> ::= ( <op> <expr> <expr> ) | <var>

<op> ::= +|-|*

<var> ::= x0|1.0

In this particular instance prefix expressions are generated and then evaluated
by the interpreter.

6.7 Max Problem

Select MaxProblem.properties from the Propertiesmenu. This problem tries
to generate the largest number possible from with a given terminal and func-
tional set and with a depth limit. Despite seeming to be a simple problem the
fitness landscape is deceptive and leads to suboptimal solutions. It is referenced
in [40]

<prog> ::= <expr>

<expr> ::= <op> <expr> <expr> | <var>

<op> ::= + | *

<var> ::= 0.5

Even though the problem tries to generate the largest number the fitness is still
minimised

20



6.8 Royal Tree

Select RoyalTree.properties from the Properties menu. This problem is an
adaptation of a Genetic Algorithm benchmark the Royal Road problem [42]. It
is problem commonly used as a standard function for testing the effectiveness
of Genetic Programming. It consists of a single base function that is specialized
into as many cases as necessary, depending on the desired complexity of the
resulting problem.

<tree> ::= <leaf> | <intnode>

<leaf> ::= x

<intnode> ::= ( <A> <tree> )

| ( <B> <tree> <tree> )

| ( <C> <tree> <tree> <tree> )

| ( <D> <tree> <tree> <tree> <tree> )

<A> ::= A

<B> ::= B

<C> ::= C

<D> ::= D

6.9 GUI Features

In addition to changing between the different demonstration problems using the
main GUI window it is also possible to:

• modify the common parameter settings for all problems including the
choice of grammar,

• save parameter settings to a new file,

• delete a parameter settings file,

• or load in previously saved parameter settings.

6.10 Next Steps

The interested user can now gain a deeper understanding of how to modify the
grammar (Tutorial 1), add your own simple problem (Tutorial 2), and use the
command line interface (Tutorial 3) by reading Sections 7, 8 and 9 respectively.

21



7 Tutorial 1: Modifying Grammar Files

After modifying parameter setting using the GUI, the simplest task is to alter
the grammar for one of the demonstration problems. In GUI mode it is not
currently possible to directly edit the grammar files provided. To modify a
grammar:

1. Open the relevant grammar file in a text editor from the <GEVA_ROOT>

/param/Grammar/ directory and be sure to save the modified file to the
same location and give it a new name.

2. Return to the GUI and using the drop down menu for Grammar switch
to the grammar file with the new name.

3. Run with the new grammar.

We now walk the interested reader through a specific example of altering the
grammar adopted for the default HelloWorld problem.

7.1 Modifying the HelloWorld Grammar

The grammar for the HelloWorld demo problem is located in the directory
called <GEVA_ROOT>/param/Grammar/. Open the file letter_grammar.bnf in
your favourite text editor. You will see the following:

<string> ::= <letter>|<letter><string>

<letter> ::= <vowel>|<consonant>|<space>

<space> ::= _

<vowel> ::= a|o|u|e|i

<consonant> ::= q|w|r|t|y|p|s|d|f|g|h|j|k|l|z|x|c|v|b|n|m

By default the Start Symbol of the grammar is the first non-terminal symbol
that appears in the file. In this case <string> is the Start Symbol from which
the mapping process will commence. In this grammar there are 2 possible
replacements for <string>. It can become <letter> or it will be replaced with
<letter><string>. This means that an output sentence (solution) from this
grammar will be comprised of one or more <letter>s.

In the above example a <letter> can be replaced with any one of <vowel>,
<consonant> or <space>, where a <space> will become a terminal symbol ’ ’,
a <vowel> can become any one of the five terminal symbols ’a’, ’o’, ’u’, ’e’, or
’i’, and finally a <consonant> can become any one of the 21 terminal symbols
’q’, ’w’, ’r’, ..., ’m’.

The grammar can be easily modified such that a string could print additional
characters. For example, this could be achieved by adding a new production
rule for <letter>. The new rule might look like:

<letter> ::= <vowel>|<consonant>|<space>|<symbol>

22



We then need to define the terminal symbol for the non-terminal <symbol>.
This is achieved by adding a new set of productions rule to the grammar for
<symbol>. The new grammar could now look like:

<string> ::= <letter>|<letter><string>

<letter> ::= <vowel>|<consonant>|<space>|<symbol>

<space> ::= _

<vowel> ::= a|o|u|e|i

<consonant> ::= q|w|r|t|y|p|s|d|f|g|h|j|k|l|z|x|c|v|b|n|m

<symbol> ::= $ | \Euro

To use this new grammar, start up GEVA as before. First navigate to the
main GEVA directory (<GEVA_ROOT>/) and then either:

1. Double-click the GEVA_GUI.jar or

2. in a shell type java -jar GEVA_GUI.jar

Now select the new grammar file from the Grammar drop-down menu, and click
on Run.

7.2 Next Steps

The interested user should now move on to Tutorial 2 to learn how to adapt
the existing demo problems to create your own. Tutorial 2 walks through how
you can modify your GEVA distribution to include an additional bonus demo
problem, Battleship.

23



8 Tutorial 2: Adding the Bonus Battleship Prob-
lem

The Advanced Tutorials described later explain in some detail how to build
your own algorithms in GEVA. However, it is also possible (and much easier)
to re-use the built-in algorithms to solve new problems. In this tutorial we will
make some simple customisations to just 3 files and write a new fitness function,
in order to solve a new problem: a simplified version of the game of Battleship.
We will ignore questions of good style and software engineering practice.

8.1 Battleship

Battleship is a paper-and-pencil game for two players, each possessing a grid
representing a map of the sea, with the player’s own ships distributed throughout
the grid. The aim is to fire at and sink the opponent’s ships, by guessing what
cells they occupy.

In this tutorial, the aim will be to evolve an optimal “firing pattern” for
a fixed grid of enemy ships. The firing pattern will consist of multiple salvos,
and each salvo will consist of multiple adjacent shots. This description should
give a hint as to the type of grammar we will use. The aim will be to sink as
many as possible of the ships using as few salvos and as few shots as possible.
Each firing pattern will correspond to a single (evolutionary) individual, and
after each individual is run, the grid will be reset with the ships intact and in
the same places as before. Therefore, our version of Battleship will omit the
in-game feedback and two-player aspects of the real game.

8.2 Fitness Function

GEVA’s fitness evaluation functions are represented as classes which live in
<GEVA_ROOT>/GEVA/src/FitnessEvaluation/ (where <GEVA_ROOT> represents
the root directory of your GEVA download). Create a new directory un-
der that location, named Battleship, and copy the file Battleship.java

in there. This file contains not only the fitness evaluation code, but also
(in our case) some hard-coded game logic and a method of visualising the
success of an individual. You can find the file Battleship.java at http:

//ncra.ucd.ie/geva/Battleship.java.
Battleship.java was created firstly by copying an existing fitness evalu-

ation function, <GEVA_ROOT>/GEVA/src/FitnessEvaluation/PatternMatch/

WordMatch.java. It may be instructive to view the differences between the
two: they consist largely of logic specific to the two problem instances. The
same copy-and-edit approach may be the easiest way to create new fitness func-
tions of your own devising.

The essential parts of the fitness evaluation class are that it imports
FitnessEvaluation.FitnessFunction, it implements FitnessFunction, it has
a constructor, it over-rides setProperties(), and it returns a (double) fit-
ness value from evaluateString(). evaluateString() is where the real work

24



happens, and its structure is shown below. The first line converts the input
phenotype into a string (without adding superfluous spaces). The body of the
function adds to fitness every time it detects that a ship has been hit, with a
bonus for each complete sinking, and subtracts for every salvo and every shot.
Note that GEVA always minimises fitness, so in our example we take a safe
reciprocal (1 / (1 + x)).

public double evaluateString(Phenotype p) {

String pS = p.getStringNoSpace();

double fitness;

// parse pS and evaluate...

return fitness;

}

Much of Battleship.java is hard-coded game logic, and is written in a
rather C-like style which will offend native Java programmers. evaluateString()
contains some code for printing (on the console) a visualisation of each individ-
ual’s success. The code is commented out by default, since it will slow the
program down somewhat. This is regarded as a quick and dirty way of accom-
plishing this task.

8.3 Grammar

Have a look at some of the existing grammars, which all have the suffix .bnf

and live in <GEVA_ROOT>/param/Grammar/. They are written in Backus-Naur
form, as explained elsewhere. In every case, the start symbol will be that on
the left-hand side of the rule on the first line in the file. In our case, as hinted
above, an individual (a “firing-pattern”) consists of multiple salvos separated
by semi-colons, and each salvo consists of x- and y-coordinates and a size. Each
of these is an integer with a limited range, as you can see in the code below.
Paste it into a new file <GEVA_ROOT>/param/Grammar/Battleship.bnf.

<pattern> ::= <salvo> | <salvo>;<pattern>

<salvo> ::= <pos>,<pos>,<size>

<pos> ::= <GECodonValue[0, 9]>

<size> ::= <GECodonValue[1, 5]>

Note the special GECodonValue non-terminals in this grammar. This is an
easy way to put numerical values — in this case, integer values — into the
phenotype. The current codon in the genome is mapped to produce a numerical
value in the range given. For example, the fourth rule above is equivalent to
<size> ::= 1|2|3|4|5. Double values can be produced by specifying the end-
points of the range with a decimal point or in scientific notation. The range may
be closed (i.e. include the end-points), as above, or may be open (using round
brackets, e.g. <GECodonValue(0, 6)>), or half-open at either end. There is also
a special notation for producing a string from a given set: <GECodonValue{x,
y, z}>.

25



8.4 GEVA Bureaucracy

For the Battleship problem to run from the GEVA GUI, there are two more
small tasks. Open the file <GEVA_ROOT>/param/ff.config and add the line

FitnessEvaluation.Battleship.Battleship,Battleship.bnf

just before the -jar line near the end. This tells the GEVA GUI that our new
fitness function exists and corresponds to our new grammar.

Next, copy the file <GEVA_ROOT>/param/Parameters/HelloWorld.properties
to a new file in the same directory, Battleship.properties. Change the
grammar file and fitness function entries as follows:

grammar file=../param/Grammar/Battleship.bnf

fitness function=FitnessEvaluation.Battleship.Battleship

Also change the number of generations and population size as follows, so that
initial experiments with Battleship will be quite short:

generations=20

population size=20

This new .properties file gives all the configuration necessary for a single
experiment with GEVA. When we start GEVA, this set of properties will be
available as a preset experiment in the GUI (it can also be loaded as a preset
on the command-line).

8.5 Building and running

As you have modified some of the source code you now need to rebuild the jar
files. To do this go to <GEVA_ROOT>/ and type ant

<GEVA_ROOT>$ ant

Note that you need to have ant [2] installed to do this! Otherwise you
could use your favourite IDE to rebuild the jar files. The build.xml file is
used by ant to recompile the modified source files and build fresh jar files. The
<GEVA_ROOT>/build.xml file rebuilds all the jar files.

You should see a successful build happening. Java jar files will be placed in
<GEVA_ROOT>/GEVA_GUI.jar, <GEVA_ROOT>/bin/GEVA.jar and <GEVA_ROOT>

/bin/GUI.jar. Now your program can be used from the command-line or from
its own GUI:

GUI usage Go to <GEVA_ROOT>/ and type java -jar GEVA GUI.jar. In the
first drop-down menu, select Battleship.properties (note that the con-
figuration will change to reflect the .properties file we edited earlier),
and click “run”. The program should again run with output in the GUI’s
console.

Command-line usage Go to <GEVA_ROOT>/bin and type

java -jar GEVA.jar -main class Main.Run -properties file

../param/Parameters/Battleship.properties

and you should see the program running.

26



If you wish to see visualisations of the game grid, uncomment the print
statements in battleship.java, rebuild and re-run. In the console you will now
see the ships gradually being sunk more and more successfully as the generations
go by.

8.5.1 Windows

Here are some notes especially for Windows users:

1. Download latest ’ant’ (Binary Edition).

2. Dowload latest JDK (e.g., jdk1.6.0_10), jdk version <1.5 does not work.

3. Add path of ant and JDK: Go to ’My Computer > Properties > Advanced
Tab > Environmental Variables > Systematic Variables > Path > click
Edit >’ add under this path add the following: <ANT_ROOT>\bin;<JAVA_
ROOT>\jdk1.6.0_10\bin after this, we can run from windows command
line <GEVA_ROOT>\ant, in order to build the file;

8.6 Next Steps

The reader who feels that the fitness could have been calculated differently is
certainly right and is invited to experiment. However, a more interesting project
might involve altering the grammar and using the fitness function to encour-
age the evolution of re-use. If the concept of horizontal salvos with variable
sizes had to be discovered by evolution, rather than being built-in as it is here,
this game might provide a neat demonstration of the usefulness of re-use and
automatically-defined functions.

A description of how to use GEVA’s command line interface is now presented
in Tutorial 3 (Section 9).

27



9 Tutorial 3: Command Line Access

For those users who want more direct control and the ability to use GEVA with
scripts a command-line interface is provided. To access this interface GEVA.jar,
which is contained in the bin/ directory, should be used. In a shell navigate
into <GEVA_ROOT>/bin, and you can run GEVA by typing

java -jar GEVA.jar -main_class Main.Run

By default the HelloWorld demo problem will run with the default grammar
and parameter settings. Output to stdout will be generated as follows:

Loading properties from file system: ../param/Parameters/HelloWorld.properties
mutation_probability=0.02
initialiser=Operator.RampedFullGrowInitialiser

generations=1000
replacement_type=generational

generation_gap=0.5
crossover_operation=Operator.Operations.SinglePointCrossover

evaluate_elites=false
userpick_size=20
grammar_file=../param/Grammar/letter_grammar.bnf

grow_probability=0.5
population_size=100

output=
fitness_function=FitnessEvaluation.PatternMatch.WordMatch
max_wraps=3

selection_operation=Operator.Operations.TournamentSelect
crossover_probability=0.7

mutation_operation=Operator.Operations.IntFlipMutation
max_depth=10

elite_size=10
word=geva
tournament_size=3

fixed_point_crossover=false
stopWhenSolved=true

Catch interval default: best individual
Output directory is /Users/mike/Desktop/GEVA-v1/bin/

#---Data---
Gen FitEvals Time(ms) Invalids BestFit AveFit VarFit AveUsedGenes AveLength

0 0 44 0 3.000 4.980 2.900 9.690 9.000

1 0 13 2 3.000 4.122 0.454 6.082 6.000
2 0 7 4 2.000 3.792 0.186 5.833 7.000

3 0 8 0 2.000 3.530 0.289 7.010 9.000
4 0 5 2 2.000 3.265 0.317 8.051 9.000
5 0 4 0 2.000 3.120 0.346 8.720 11.000

6 0 6 4 2.000 3.063 0.579 8.958 11.000
7 0 5 0 2.000 2.740 0.532 8.860 12.000

8 0 7 0 2.000 2.610 0.498 8.820 13.000
9 0 5 0 1.000 2.420 0.504 9.550 13.000

10 0 6 2 1.000 2.643 0.821 9.439 14.000
11 0 5 0 1.000 2.320 0.818 9.770 15.000
12 0 4 0 1.000 2.350 0.988 9.380 16.000

13 0 6 0 1.000 2.040 0.918 9.460 19.000
14 0 9 0 1.000 1.770 0.837 10.690 20.000

15 0 7 0 0.000 1.630 0.753 11.380 21.000
Rank:0 Fit:0.0 Phenotype:g e v a

Done running: Total time(Ms) for 1000 generations was:219

As can be seen above the output includes the list of parameters and their
settings, followed by a number of statistics for each generation of the run, and
the fitness and phenotype of the best solution found. Finally the total runtime
of GEVA in milliseconds is output.

28



9.1 Changing Parameters

To change the parameters for the out-of-the-box GEVA there are two options.

1. Command line switches.

2. Modifying the Properties file.

9.1.1 Command Line

In a shell you can manually override the default parameter settings. To see the
standard parameters which can be changed use:

java -jar GEVA.jar -main_class Main.Run -h

For convenience the output of the help switch is provided here:

Command line arguments

-h for help

-v for version

-mutation_probability

-tail_percentage

-initialiser

-generations

-replacement_type

-generation_gap

-main_class

-crossover_operation

-evaluate_elites

-derivation_tree

-userpick_size

-grammar_file

-grow_probability

-population_size

-output

-fitness_function

-max_wraps

-selection_operation

-crossover_probability

-mutation_operation

-max_depth

-elite_size

-word

-tournament_size

-fixed_point_crossover

-stopWhenSolved

-initial_chromosome_size

- To change the mutation probability to 0.1%

29



java -jar GEVA.jar -main_class Main.Run -mutation_probability 0.001

- To change the number of wrapping events

java -jar GEVA.jar -main_class Main.Run -max_wraps 5

- To change the name of the output file to which run statistics are dumped

java -jar GEVA.jar -main_class Main.Run -output stats

Note that a timestamp will be concatenated onto the filename you choose (e.g.,
in this case you might see something like stats11223421.dat).
An example output statistics file is illustrated here:

#bestFitness averageFitness averageUsedGeneLength time invalids varFitness aveLength

3.0 4.9 9.82 98 0 3.1500000000000012 9.0
3.0 3.878787878787879 6.03030303030303 19 1 0.20752984389348092 6.0
3.0 3.7 5.82 8 0 0.29 6.0

2.0 3.38 5.79 9 0 0.25559999999999966 6.0
2.0 3.29 5.85 10 0 0.24590000000000017 7.0

2.0 3.14 6.06 6 0 0.3004000000000002 7.0
2.0 2.91 6.65 7 0 0.4618999999999992 8.0

2.0 2.52 7.73 10 0 0.3495999999999999 9.0
2.0 2.5 7.62 6 0 0.49 10.0
2.0 2.47 7.67 9 0 0.5090999999999998 11.0

1.0 2.46 7.58 5 0 0.5084000000000001 12.0
1.0 2.38 8.24 8 0 0.4155999999999997 14.0

1.0 2.38 8.22 6 0 0.49559999999999976 14.0
1.0 2.11 8.94 8 0 0.39790000000000025 14.0
1.0 2.05 9.12 21 0 0.507500000000001 14.0

1.0 2.01 9.96 5 0 0.6899 14.0
1.0 2.19 10.01 8 0 0.8538999999999993 14.0

1.0 2.06 10.06 4 0 0.7163999999999995 15.0
1.0 2.19 10.44 4 0 1.0938999999999997 14.0

1.0 2.08 10.02 30 0 0.7736000000000008 13.0
1.0 2.08 10.16 5 0 0.9136000000000007 14.0
1.0 1.79 10.59 5 0 0.7659000000000001 16.0

1.0 1.82 10.69 4 0 0.6875999999999999 17.0
1.0 1.74 10.52 18 0 0.6923999999999998 17.0

1.0 1.64 11.28 4 0 0.5304000000000002 19.0
1.0 1.78 11.28 7 0 0.8115999999999997 19.0
1.0 1.81 10.88 6 0 0.9738999999999991 21.0

1.0 1.65 11.11 3 0 0.6874999999999991 22.0
1.0 1.59 10.93 3 0 0.6419000000000002 24.0

0.0 1.55 11.14 5 0 0.6874999999999997 29.0

9.1.2 Properties File

To change parameter settings via the properties files, navigate to the directory
containing the property files: <GEVA_ROOT>/param/Parameters/. Using your
favourite text editor open the file of interest. To create a new properties file it is
recommended to copy an existing file, or the TemplateProperties.properties
file to a new file. When GUI version of GEVA is restarted the new property file
will be automatically available from within the Properties drop-down menu.

To call a specific properties file from the command line using the properties file

switch. Go to <GEVA_ROOT>/bin and type

java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/<yourfilenamehere>.properties

30



9.2 Changing the Problem/Fitness Function

GEVA includes out-of-the-box a number of example problems that can be easily
switched between from the command line or the properties file. To work with
new problems please refer to the Advanced Tutorials for an example of how this
can be achieved.

The simplest approach for any of the demo problems is to use all of the
predefined parameter settings (which include the appropriate grammar) by using
the correct properties file:

HelloWorld: java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/HelloWorld.properties

EvenFiveParity: java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/EvenFiveParity.properties

L-system: java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/LSystem.properties

Paint: java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/Paint.properties

SantaFeAnt: java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/SantaFeAntTrail.properties

SymbolicRegression: java -jar GEVA.jar -main class Main.Run -properties file ../param/Parameters/SymbolicRegression.properties

To select specific fitness functions and grammar files associated with some of
the demo problems here are some further examples using the available problems
from the command line.

- HelloWorld

java -jar GEVA.jar

-main_class Main.Run
-fitness_function FitnessEvaluation.PatternMatch.WordMatch
-grammar_file ../param/Grammar/letter_grammar.bnf

In the case of the HelloWorld problem it is possible to modify the target string
to something other than “geva” without modifying the code itself. Simply set
a value for the parameter called word. For example, from the command line:

java -jar GEVA.jar -main_class Main.Run -word helloworld

Here are examples for a selection of the other demo problems.

- Even Five Parity

java -jar GEVA.jar
-main_class Main.Run

-fitness_function FitnessEvaluation.ParityProblem.BooleanInterpreter
-grammar_file ../param/Grammar/efp_grammar_gr.bnf

- Santa Fe Ant

java -jar GEVA.jar
-main_class Main.Run

-fitness_function FitnessEvaluation.SantaFeAntTrail.SantaFeAntTrailInterpreter
-grammar_file ../param/Grammar/sf_grammar_gr.bnf

- Symbolic Regression (x+ x
2 + x

3 + x
4)

java -jar GEVA.jar
-main_class Main.Run

-fitness_function FitnessEvaluation.SymbolicRegression.SymbolicRegressionInterpreter
-grammar_file ../param/Grammar/sr_grammar_sch.bnf

31



9.3 Next Steps

The advanced user who now wants to jump straight into the deep end and
get their hands dirty coding their own search engine should visit the Advanced
Tutorials in Section 10.

32



10 Advanced Tutorials

In this series of tutorials the user gets their hands dirty with Java code. We grad-
ually expose how to construct an evolutionary algorithm with GEVA starting
by simply initialising a population in Tutorial 4. Tutorial 5 then demonstrates
how this population can be manipulated in an evolutionary loop by setting up
the pipeline of operators that can be employed (e.g., selection, crossover and
mutation). Tutorial 6 then outlines how a new fitness function can be created.

10.1 Tutorial 4: How to Initialise a Population

To work through this tutorial navigate to <GEVA_ROOT>/GEVA/src/Main/Tutorials/
and open Tutorial4.java in your favourite code editor. The parameter settings
for this tutorial are contained in <GEVA_ROOT>/param/Parameters/Tutorials/

Tutorial4.properties.

package Main.Tutorials;

import Algorithm.MyFirstSearchEngine;

import Algorithm.Pipeline;

import Algorithm.SimplePipeline;

import Main.AbstractRun;

import Mapper.GEGrammar;

import Util.Constants;

import Util.Random.MersenneTwisterFast;

Figure 10: Tutorial 4 header details.

Fig. 10 details the package and import statements necessary to setup a basic
search algorithm in GEVA. Key components here are the use of the classes
belonging to Algorithm to set up the basic architecture of the search engine
itself. The Mapper class implements GE’s characterisitc genotype-phenotype
mapper. The remaining statements import utilities such as the random number
generator.

Fig 11 outlines the signature of the Tutorial4 class, and it extends
AbstractRun. A State can be considered a container class which is used to
setup, initialise and run the algorithm. AbstractRun adds the parameter read-
ing functionality to State. The constructor method Tutorial4() begins by
setting up the pseudo-random number generator and then points to the loca-
tion of the parameter file for this example.

33



/**

* Tutorial4 main class.

* This class is derived from the class State. State is conceptually the outer level

* of a program created using GEVA, it is a container class for the algorithm and it

* used to setup initialise and run the algorithm. AbstractRun provides parameter

* reading functionality. You should try to familiarise yourself with GEVA’s parameterisation

* mechanism(Covered in a later tutorial) as it will make your life much easier :)

*

* When Implementing a algorithm with GEVA it makes sense to extend AbstractRun,

* and implement the method setup(String[] args).

* @author erikhemberg

*/

public class Tutorial4 extends AbstractRun {

/** Creates a new instance of Tutorial4 */

public Tutorial4() {

this.rng = new MersenneTwisterFast();

super.propertiesFilePath = Constants.DEFAULT_PARAM_ROOT

+ "Paramaters/Tutorials/Tutorial4.properties";

}

Figure 11: Tutorial 4 class signature and constructor details.

The setup(String[]args) method is where all the magic happens in this
example, see Fig. 12. The first order of business is to read in the command
line arguments (if there are any). Next we setup the grammar which is read in
from the current state of properties. The current state was read in from the
properties file specified in the constructor method initially and the command line
arguments modify this state. So this can be determined by either the properties
file or overridden by using the appropriate command line switch.

Now we start to setup the search algorithm engine itself by adopting the
Algorithm interface. We then create the Initialiser module from the gram-
mar, pseudo-random number generator and remaining properties. This module
is later passed into the algorithm pipeline.

This means we now need to create the pipeline for the algorithm. There
are two pipelines assocated with an algorithm in GEVA. The first pipeline
(pipelineInit) is used during the initialisation phase, the second pipeline
(pipelineRun) during the main body of the algorithm (e.g. the evolution-
ary loop in the case of an Evolutionary Algorithm). The pipeline determines
what actions take place in the execution of the algorithm, and of course their
order of execution. SimplePipeline() is used to initialise the new pipeline,
and we then tell the pipeline that it is the initialisation pipeline using alg.

setInitPipeline(pipelineInit);.
Once we have the pipeline established we can add modules to it. Earlier we

created the initialistion module which contains all the details required to setup
the first population of candidate solutions.

Finally in this case we tell GEVA what algorithm to use with this.algorithm=
alg;.

34



/**

* Setup the algorithm. Read the properties. Create the modules(Operators) and operations
* @param args The command line arguments

*/
public void setup(String[] args) {

/* Read properties

* You can configure many different aspects of GEVA
* through the use of a properties file. While it is possible to configure

* the modules using get/set methods we encourage you to learn how to use the
* properties file and associated properties object to configure the system as

* this makes it much easier to set up and change parameters for a run.
* These properties can also be specified or overridden using the command line
* arguments

*
* When you pass in an argument or an argument is read from the properties file

* they are placed into a properties object. This object is passed to all modules’
* constructor methods and each module is responsible for reading its own arguments.
* This makes parameterising easy by reducing the need for parameter setting in the

* code. In fact it is possible to set up and configure different types of algorithms
* using the supplied modules using only a properties file.

*/

// Creates properties from the command line arguments
this.readProperties(args);

/*
* There are various steps to create an algorithm in GEVA. In this tutoral we only

* intitalise a population. To get a better idea of what is going on, look at the
* associated properties file Parameter/Tutorial4.properties
*/

//Grammar

GEGrammar grammar = new GEGrammar(this.properties);

//State has a data member Algorithm alg; Algorithm is an interface and
//MyFirstSearchEngine is a simple but surprisingly flexible implementation.
MyFirstSearchEngine alg = new MyFirstSearchEngine();

//Initialiser - One of he features of AbstractRun is that you can,

//by using reflection, specify modules as parameters.
//The method getInitialiser will return an initialiser as specified in the properties object.
initialiser = getInitialiser(grammar, this.rng, this.properties);

/*

* Init
* Here we create the initialisation pipeline. Algorithms derived from the base

* class AbstractAlgorithm have two pipelines, pipelineInit and pipelineRun.
* pipelineInit is run once at the start of an algorithm, so any initialisation
* modules need to go on that pipeline.

* In this tutorial we are simply going to create an instance of SimplePipeline(),
* which as the suggests is a simple implementation of a pipeline. Pipelines are

* at the heart of the way GEVA builds algorithms and they will be covered in more
* detail in later tutorials. For now we simply need to add our initialiser module

* to the initialisation pipeline.
*/

Pipeline pipelineInit = new SimplePipeline();

alg.setInitPipeline(pipelineInit);

//Add modules to pipeline
pipelineInit.addModule(initialiser);

// Finally we set the algorithm

this.algorithm = alg;
}

Figure 12: Tutorial 4 setup() method details.

35



/**

* Run the state

* @param args The command line arguments

*/

public static void main(String[] args) {

try{

//Create the Tutorial4 object

Tutorial4 mfs = new Tutorial4();

//Read the command-line arguments

if(mfs.commandLineArgs(args)) {

//Setup the algorithm. This calls the above setup method

mfs.setup(args);

//Initialize the algorithm. This runs the initialisation pipeline

mfs.init();

System.out.println("Well done running: Tutorial4, now look at Tutorial5");

}

} catch(Exception e) {

System.err.println("Exception: "+e);

e.printStackTrace();

}

}

Figure 13: Tutorial 4 main method details.

The last step in this example is to write the main method to execute our
pipeline. The code is detailed in Fig. 13. We start by calling the Tutorial4
constructor method, reading in the command-line arguments and finally calling
the init() method to initialise our algorithm.

10.1.1 Running the code

Now to test your code. Navigate into the <GEVA_ROOT> directory, and use ant [2]
to rebuild the code. That is, assuming ant is installed type ant in your favourite
shell. The build.xml file is used by ant to recompile the modified source files
and build fresh jar files. The <GEVA_ROOT>/build.xml file rebuilds all the jar
files. Once finished the build, navigate to the <GEVA_ROOT>/bin and type the
following:

java -classpath GEVA.jar Main.Tutorials.Tutorial4

The following will be output if successfully executed:

Loading properties from file system: ../param/Parameters/Tutorials/Tutorial4.properties

initial_chromosome_size=200

initialiser=Operator.Initialiser

max_wraps=1

grammar_file=../param/Grammar/HelloWorld_grammar.bnf

population_size=100

Well done running: Tutorial4, now look at Tutorial5

36



10.2 Tutorial 5: How to Construct a Simple Evolutionary
Algorithm

In Tutorial 4 we had a look at a simple algorithm that only initilised a popula-
tion. In this tutorial we will show how to construct a simple algorithm.

In GEVA algorithms are built by combining different modules into a pipeline.
A module is a self-contained algorithm building block, by stacking modules an
algorithm is created (You could create your entire algorithm in one module, but
that is not what GEVA is designed for). Another tutorial will deal with creating
your own modules, this tutorial only deals with the existing GEVA modules.

A module should perform a single part of the algorithm, e.g mutation or
selection. In this tutorial we will create a fairly standard evolutionary algorithm
using tournament selection, int-flip mutation and single point crossover, the
newly created individuals will replace the worst individuals in the population.

This class is derived from the class State. State is conceptually the outer level
of a program created using GEVA, it is a container class for the algorithm and
it used to setup, initialise and run the algorithm. AbstractRun provides param-
eter reading functionality. You should try to familiarise yourself with GEVA’s
parameterisation mechanism (covered in a later tutorial) as it will make your
life much easier. When implementing an algorithm with GEVA it makes sense
to extend AbstractRun, and implement the method setup(String[]args).

The setupmethod is identical to Tutorial4 up to setting up the Initialiser
module. The first new item is the creation of a crossover module as detailed in
Fig. 14.

/*

* CROSSOVER

* To implement crossover. First a crossover operation needs to be chosen.

* Here it is single point crossover. To the operation a reference to the

* random number generator is passed as well as the properties. The crossover

* operation class will identifie which of the properties it will consider

* for its settings, the rest will be ignored.

*

* After the operation is instanciated a CrossoverModule object is created,

* which takes a reference to the crossover operation and sets it as the

* operation performed by the module.

*/

CrossoverOperation singlePointCrossover = new SinglePointCrossover(this.rng, this.properties);

CrossoverModule crossoverModule = new CrossoverModule(this.rng, singlePointCrossover);

Figure 14: Tutorial 5 crossover module details.

In this case a one-point crossover operator is employed (singlePointCrossover.
To create a crossovermodule the actual crossover type used (CrossoverOperation)
and a pseudo-random number generator are required.

The next step sees the creation of a mutation module, which adopts an
integer-based mutation. Codons in GEVA are integers by default. The integer
mutation randomly picks an integer to replace the current codon value. You will
notice a strong similarity to the creation of the crossover module (see Fig. 15).

37



/*

* MUTATION

* The same as for crossover, except that a mutation operation

* and a mutation module are created.

*/

IntFlipMutation mutation = new IntFlipMutation(this.rng, this.properties);

MutationOperator mutationModule = new MutationOperator(this.rng, mutation);

Figure 15: Tutorial 5 mutation module creation details.

Fig. 16 outlines the creation of the selection and replacement modules, which
is achieved in a similar fashion to crossover and mutation. The difference in this
case is the choice of strategy in each case is read from the properties state
(these were set either from the properties file or through the command-line).
The choice of mutation and crossover are effectively hard-coded in this tutorial
example.

/*

* SELECTION

* A selection operation is created by calling getSelectionOperation, to,

* via reflection, create a SelectionOperation. The SelectionOperation

* class to instanciate is specified in the properties file. As with

* crossover this is passed to the SelectionScheme module.

*/

SelectionOperation selectionOperation = getSelectionOperation(this.properties, this.rng);

SelectionScheme selectionScheme = new SelectionScheme(this.rng, selectionOperation);

/*

* REPLACEMENT

* Again similar procedure to crossover when creating the replacement

* operation. For the module creation reflection is used. This is

* because there are different ways of joining the new and old

* populations. Another important thing to notice for the replacement

* is that it needs to know which population it will join. Here it takes

* the reference from selectionScheme.getPopulation(), in other words

* the selected population.

*/

ReplacementOperation replacementOperation = new ReplacementOperation(this.properties);

JoinOperator replacementStrategy =

this.getJoinOperator(this.properties, this.rng,

selectionScheme.getPopulation(), replacementOperation);

Figure 16: Tutorial 5 the creation of the selection and replacement modules.

Now we create the pipelines. The initialisation pipeline is created in an
identical manner to Tutorial1. The difference in this tutorial is that we setup
the LoopPipeline, and the details are provide in Fig. 17.

Up to this point we have established the various operators (modules) that
will comprise the search algorithm. The next step is to associate the relevant
population with the different modules (see Fig. 18). The selection module takes
the initial population, and the replacement module also takes the initial popula-

38



/*

* LOOP

* Here we create the loop pipeline, this is what will be run after the

* initialisation. It is to this pipeline that all the modules should be

* attached. It is important to consider the execution order of the modules,

* and which population they will be working on.

*/

Pipeline pipelineLoop = new SimplePipeline();

alg.setLoopPipeline(pipelineLoop);

Figure 17: The creation of the LoopPipeline in Tutorial 5.

tion in addition to the population output by population created by the selection
scheme. The initial population is equivalent to the current population in an EA
and the selection scheme population is equivalent to a temporary population of
children which is used to create the next generation in combination with the
current population members. The crossover and mutation modules then take
the selection scheme population.

/*

* POPULATIONS

* Here the populations that the different modules will work on is set.

* Remember that we set the population which would be join when we

* constructed the module. Here the modules work on either the

* initialised population or the selected population. Finally both

* populations are in the replacementStrategy module.

*/

selectionScheme.setPopulation(initialiser.getPopulation());

// The selectionScheme takes one population and splits it

replacementStrategy.setPopulation(initialiser.getPopulation());

// The replacement takes two populations and joins them

// The population that will be joined is specified in the constructor.

crossoverModule.setPopulation(selectionScheme.getPopulation());

// Crossover will be performed on the selected population

mutationModule.setPopulation(selectionScheme.getPopulation());

// Mutation will be performed on the selected population

Figure 18: Associating populations with the different modules from the
pipelines.

Finally we add the modules to the loop pipeline in the order in which we
wish them to be executed. This is outlined in Fig. 19. Then we create our main
method, which is the same as in the previous tutorial except we can run the
loop pipeline on this occasion as can be seen in Fig. 20 using the run() method.

10.2.1 Running the code

Now to test your code follow the same steps as for the last tutorial. Navigate
into the <GEVA_ROOT> directory, and use ant [2] to rebuild the code. That is,
assuming ant is installed type ant in your favourite shell. The build.xml file is

39



/*

* PIPELINE

* Here the modules are added in the desired order to the loop pipeline.

* First selection will be performed. After that crossover will be

* performed, remember that the crossover module will operate on the

* selected population. This was set above, when the setPopulation was

* called. Then the selected population will be mutated. Finally the

* replacementStartegy modul will replace the old population

* with the selected population.

*/

pipelineLoop.addModule(selectionScheme);

//Select the population according to the in the properties

//file specified criteria, here tournament selection

pipelineLoop.addModule(crossoverModule);

//Perform crossover on the setPopulation, here the selected

//population will be subjected to single point crossover

pipelineLoop.addModule(mutationModule);

//Mutate the setPopulation. Here int-flip muatation is

//performed on the selected population

pipelineLoop.addModule(replacementStrategy);

//Replace the old population with the selected population.

Figure 19: Adding modules to the pipeline in Tutorial 5.

/**

* Run the state

* @param args The command line arguments

*/

public static void main(String[] args) {

try{

//Create the Tutorial5 object

Tutorial5 mfs = new Tutorial5();

//Read the command-line arguments

if(mfs.commandLineArgs(args)) {

//Setup the algorithm. This calls the above setup method

mfs.setup(args);

//Initialize the algorithm. This runs the initialisation pipeline

mfs.init();

// Run the algorithm

int its = mfs.run(); //Returns the number of iterations performed

System.out.println("Well done running: Tutorial5 for "+its+",

now look at Tutorial6");

}

} catch(Exception e) {

System.err.println("Exception: "+e);

e.printStackTrace();

}

}

Figure 20: The main method for Tutorial 5 which executes the loop pipeline.

40



used by ant to recompile the modified source files and build fresh jar files. The
<GEVA_ROOT>/build.xml file rebuilds all the jar files. Once finished the build,
navigate to the <GEVA_ROOT>/bin and type the following:

java -classpath GEVA.jar Main.Tutorials.Tutorial5

The following will be output if successfully executed:

Loading properties from file system: ../param/Parameters/Tutorials/Tutorial5.properties

initialiser=Operator.Initialiser

selection_operation=Operator.Operations.TournamentSelect

tournament_size=3

grammar_file=../param/Grammar/HelloWorld_grammar.bnf

replacement_type=steady_state

fixed_point_crossover=true

crossover_probability=0.9

initial_chromosome_size=200

mutation_probability=0.05

population_size=100

max_wraps=1

Well done running: Tutorial5 for 5000, now look at Tutorial6

41



10.3 Tutorial 6: How to Add a New Fitness Function

In Tutorial 5 we walked through an example of how a simple Genetic Algorithm
could be implemented using GEVA without any fitness evaluation. In this tu-
torial we will show how to add a simple symbolic regression fitness evaluation
to the algorithm.

In the demonstration problems outlined earlier in this document a Symbolic
Regression example was introduced in which fitness was calculated using the
JScheme interpreter. JScheme is a dialect of scheme with a simple java inter-
face [22]. That is, solutions to the demo Symbolic Regression problem were
output in the JScheme language.

One of the advantages of adopting the Grammatical Evolution approach
to Genetic Programming is the flexibility of language choice that it allows.
Effectively you can output code in any language and use a compiler for that
language to create an executable which can be executed to calculate a fitness.
Alternatively, if it is an interpreted language you can use the interepeter for
fitness calculation. In this Tutorial we outline an alternative approach to the
demo problem where we generate symbolic expressions in the Java language and
use the Bean Scripting Framework [8] and Groovy [17] to dynamically evaluate
them.

10.3.1 A new fitness function

A fitness function which uses the Bean Scripting Framework is provided in
<GEVA_ROOT>/GEVA/src/FitnessEvaluation/externalInterpreters/SymbolicRegression/SymbolicRegressionBSF.

java. The code is reproduced in Fig. 21. You can see that this class extends the
InterpretedFitnessEvaluationBSF class which can be found in
<GEVA_ROOT>/GEVA/src/FitnessEvaluation/InterpretedFitnessEvaluationBSF.java

In the createCode method contained in SymbolicRegressionBSF.java we
basically write a Java class as a string and dynamically load in the evolved in-
dividual using the code.append(p.getString()); statement. This Java code
in the form of a string is then used in the runFile method in the
InterpretedFitnessEvaluationBSF.java class. This string (Java code) is
then passed to the Bean Scripting Framework and Groovy to evaluate its fitness.

Now that we have our new fitness function which evaluates code output
in Java, we can now add this to the algorithm from the main method of this
tutorial.

42



package FitnessEvaluation.externalInterpreters.SymbolicRegression;

import FitnessEvaluation.InterpretedFitnessEvaluationBSF;

import Individuals.Phenotype;

import java.util.Properties;

/**

* Evaluates the fitness for the SymbolicRegressionExperiment class. The help class SymRegFunk

* is used to evaluate the arithmetic expressions.

* @author jonatan

*/

public class SymbolicRegressionBSF extends InterpretedFitnessEvaluationBSF {

/** Creates a new instance of SymbolicRegression */

public SymbolicRegressionBSF() {

}

public void setProperties(Properties p) {

}

public String createCode(Phenotype p) {

StringBuffer code = new StringBuffer();

//Header

code.append("package FitnessEvaluation.SymbolicRegression;\n");

code.append("public class Test extends SymRegFunkBSF {\n");

code.append("\tpublic Test() {}\n");

code.append("\tpublic double expr(double X) {\n\t\treturn ");

//Input

code.append(p.getString());

//Tail

code.append("\n\t}\n}\n");

code.append("test = new Test()\ntest.getFitness()");

return code.toString();

}

}

Figure 21: A simple Fitness function which adopts the Bean Scripting Frame-
work to dynamically evaluate Java code.

10.3.2 Joining the Dots

As in Tutorials 4 and 5, again we start with the setup() method with the
difference this time that we add in code to identify which fitness function to
use. Fig. 22 outlines the statements necessary to achieve this where the fitness
function to adopt is specified from the properties object whose state has been
determined by either the properties file, or command line arguments, or both.

In GEVA fitness evaluation is peformed by an operation called
fitnessEvaluationOperation. The FitnessEvaluationOperation uses the
fitnessFunction to calculate fitness by calling the getFitness method of a
FitnessFunction object.

The FitnessEvaluator is then used to pass the fitness function to the algo-

43



/*

* FITNESS FUNCTION

* The fitness function is determined dynamically by getFitnessFunction.

* Where the fitness function is specified in the properties file.

* A fitness function implements the interface FitnessFunction, this

* interface requires it to implement getFitness(Individual i).

* It is there that the fitness evaluation should be written. In this

* example the fitness evaluation consists of matching the string

* that an individual maps to a predifined string. This tutorial

* demonstrates a simple case which does not involve compiling.

*

* The FitnessEvaluationOperation takes the fitness function as an

* argument and calls the getFitness method in the FitnessFunction.

* This operation checks if the individual is already evaluated,

* mapped and valid. In this tutorial only unevaluated individuals with

* valid mappings will be sent to the fitness function.

* In GE the individual can be invalid if the there are non-terminals

* still present in the developing solution after we have read all

* the codons on the genome.

*

* A FitnessEvaluator module contains the operation and is what is

* attached to the pipeline.

*/

FitnessFunction fitnessFunction = getFitnessFunction(this.properties);

FitnessEvaluationOperation fitnessEvaluationOperation =

new FitnessEvaluationOperation(fitnessFunction);

FitnessEvaluator fitnessEvaluator =

new FitnessEvaluator(this.rng, fitnessEvaluationOperation);

Figure 22: Tutorial 6 code to state which FitnessFunction to adopt.

FitnessEvaluator fitnessEvaluatorInit =

new FitnessEvaluator(this.rng, fitnessEvaluationOperation);

fitnessEvaluatorInit.setPopulation(initialiser.getPopulation());

Figure 23: Addition of the FitnessEvaluator to the initialisation pipeline.

rithm pipelines. We can see the code making the addition to the initialisation
pipeline in Fig. 23.

Before we add the FitnessEvaluator to the main loop pipeline we must first
tell it which population to operate on (see Fig. 24) and then add it to the loop
pipeline in Fig. 25.

fitnessEvaluator.setPopulation(selectionScheme.getPopulation());

// Fitness evaluation will be performed on the selected population

Figure 24: Tell the FitnessEvaluator which population to operate on in the main
loop pipeline.

44



pipelineLoop.addModule(fitnessEvaluator);

//The population will be assigned new fitness

Figure 25: Addition of the FitnessEvaluator to the main loop pipeline.

10.3.3 Collecting Statistics

In the example code we have also included the ability to capture some statistics
about the evolving population (see Fig. 26).

//Statistics

StatCatcher stats =

new StatCatcher(Integer.parseInt(this.properties.getProperty("generations")));

IndividualCatcher indCatch = new IndividualCatcher(this.properties);

stats.addTime(startTime);

//Set initialisation time for the statCatcher (Not completly accurate here)

StatisticsCollectionOperation statsCollection =

new StatisticsCollectionOperation(stats, indCatch, this.properties);

Collector collector = new Collector(statsCollection);

...

collector.setPopulation(initialiser.getPopulation());

//set population that collector works on

pipelineInit.addModule(collector);

// add collector to the initialisation pipeline

...

pipelineLoop.addModule(collector);

// add collector to the main loop pipeline

Figure 26: Addition of the statistics collector.

10.3.4 Running the code

Now to test your code follow the same steps as for the other tutorials. Navigate
into the <GEVAROOT> directory, and use ant [2] to rebuild the code. That is,
assuming ant is installed type ant in your favourite shell. The build.xml file is
used by ant to recompile the modified source files and build fresh jar files. The
<GEVA_ROOT>/build.xml file rebuilds all the jar files. Once finished the build,
navigate to the <GEVA_ROOT>/bin and type the following:

java -classpath GEVA.jar Main.Tutorials.Tutorial6

Something along the lines of the following will be output if successfully executed:

Loading properties from file system: ../param/Parameters/Tutorials/Tutorial6.properties

fitness_function=FitnessEvaluation.SymbolicRegression.SymbolicRegressionBSF

initialiser=Operator.Initialiser

selection_operation=Operator.Operations.TournamentSelect

tournament_size=3

45



grammar_file=../param/Grammar/sr_grammar_gr.bnf

replacement_type=steady_state

fixed_point_crossover=true

crossover_probability=0.9

initial_chromosome_size=200

mutation_probability=0.05

population_size=10

max_wraps=1

generations=2

Catch interval default: best individual

#---Data---

Gen FitEvals Time(ms) Invalids BestFit AveFit VarFit AveUsedGenes AveLength AveDTDepth

0 0 554 7 12.767 19.792 24.676 3.333 200.000 3.667

5 0 332 2 12.767 18.035 27.760 4.000 200.000 4.000

10 0 441 0 12.767 13.820 9.994 5.600 200.000 4.800

Rank:0 Fit:12.766599999999995 Phenotype:sin ( sin ( X ) )

Well done running: Tutorial6 for 10, now look at Tutorial7

10.3.5 Next Steps

This tutorial demonstrated how you can write your own fitness function to de-
termine the fitness of a candidate solution regardless of the language in which
it is written. The original demo Symbolic Regression instance used a dialect
of Scheme to represent the solutions and this tutorial output simple Java ex-
pressions which were then dynamically evaluated using Groovy and the Bean
Scripting Framework. For symbolic regression it is often the case that we wish
to optimise the speed at which we can evaluate solutions, so it is common to
code your own interpreter for simple prefix expressions for example. As a next
step the user interested in Symbolic Regression should consider writing their
own specialised fitness function with a built-in interpreter to suit their specific
needs.

46



11 Conclusions

GEVA is available for download from the UCD NCRA group website http:

//ncra.ucd.ie/geva or http://www.grammatical-evolution.org. Included
in the release are instructions on how to run GEVA out-of-the-box, and more
detailed tutorials for those who wish to modify the software for new purposes.
We also welcome feedback on the software as we plan to actively maintain the
code, releasing new versions as features are added. A GEVA Google group has
been set up to facilitate communication amongst the GEVA community [15]. We
hope that GEVA will be a useful resource for the EC community and beyond.

Acknowledgments

We would like to thank past and present members of the UCD Natural Com-
puting Research & Applications group, especially Tiberiu Simu, Jonathan Hug-
goson, and Jeff Wright for initial testing and some additions to the code. GEVA
was beta-tested by the students of COMP30290 Natural Computing, an elective
offered by UCD School of Computer Science & Informatics [27], from Septem-
ber to November 2007, and again from September to November 2008, and by
Patrick Middleburgh who developed the seed of the LSystem interface as part
of his Final Year Computer Science project at UCD. We are grateful to Edgar
Galvan, Jonathan Byrne, Wei Cui, Jing Dang, John Mark Swafford, Uy Nguyen
and Kai Fan for their comments on an earlier version of this document. We
would also like to thank Miguel Nicolau for many interesting discussions that
helped inform the design of GEVA, in particular the genotype-phenotype map-
per which draws upon the design adopted in Miguel’s libGE C++ library. This
publication has emanated from research conducted with the financial support
of Science Foundation Ireland under Grant No. 06/RFP/CMS042, and UCD
Research Seed Funding.

References

[1] Amarteifio S. (2005). Interpreting a Genotype-Phenotype Map
with Rich Representations in XMLGE, Masters Thesis, University
of Limerick. Available from http://ncra.ucd.ie/downloads/pub/

SaoirseMScThesis.pdf

[2] Apache Ant. http://ant.apache.org/manual/index.html.

[3] Berarducci P., Jordan D., Martin D., Seitzer J. (2004). GEVOSH: Using
Grammatical Evolution to Generate Hashing Functions. In Proceedings
of Genetic and Evolutionary Computation Conference (GECCO2004)
workshop program.

[4] Brabazon, A., O’Neill, M. (2006). Biologically Inspired Algorithms for
Financial Modelling. Springer.

47



[5] Brabazon A., O’Neill M. (2006). Credit Classification Using Grammat-
ical Evolution. Informatica, pp.325-335 Vol.30 No.3.

[6] Brabazon A., O’Neill M. (2008). Bond Rating with πGrammatical Evo-
lution. Knowledge-Driven Computing, pp.17-30 Springer.

[7] Brabazon A., O’Neill M., Dempsey I. (2008). An Introduction to Evo-
lutionary Computation in Finance. IEEE Computational Intelligence
Magazine, November, pp. 42-55, IEEE Press.

[8] Bean Scripting Framework. http://jakarta.apache.org/bsf/

[9] Cebrian M., Alfonseca M., Ortega A. (2007). Automatic generation of
benchmarks for plagiarism detection tools using grammatical evolution.
GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, Vol. 2, pp. 2253-2253, ACM Press.

[10] Cleary R. (2005). Extending Grammatical Evolution with Attribute
Grammars: An Application to Knapsack Problems, Masters The-
sis, University of Limerick. Available from http://ncra.ucd.ie/

downloads/pub/thesisExtGEwithAGs-CRC.pdf

[11] de la Puente A.O., Alfonso R.S., Moreno M.A. (2002). Automatic com-
position of music by means of grammatical evolution. Proceedings of
the 2002 conference on APL, pp. 148-155, ACM Press.

[12] Dempsey I. (2007). Grammatical Evolution in Dynamic Environments,
PhD Thesis, University College Dublin.

[13] Dempsey I., O’Neill M., Brabazon A. (2007). Constant Creation with
Grammatical Evolution. International Journal of Innovative Computing
and Applications, pp.23-38 Vol.1 No.1

[14] GEVA - Grammatical Evolution in Java. (2008). http://ncra.ucd.ie/
geva/

[15] GEVA user group. http://groups.google.com/group/geva
Email: geva@googlegroups.com

[16] http://www.grammatical-evolution.org

[17] Groovy. http://groovy.codehaus.org/

[18] Harper R., Blair A. (2005). A structure preserving crossover in Gram-
matical Evolution. In Proceedings of IEEE Congress on Evolutionary
Computation, pp.2537-2544, IEEE Press.

[19] Hemberg E., Gilligan C., O’Neill M., Brabazon A. (2007). A Grammat-
ical Genetic Programming Approach to Modularity in Genetic Algo-
rithms. In Ebner M., O’Neill M., Ekart A., Vanneschi L., and Esparcia
Alcazar A. (eds.) EuroGP (Tenth European Conference on Genetic Pro-
gramming), Valencia, Spain. Springer.

48



[20] Hemberg E., O’Neill M., Brabazon A. (2008). Altering Search Rates of
the Meta and Solution Grammars in the mGGA. In LNCS 4971 O’Neill
M., Vanneschi L., Gustafson S., Esparcia-Alcazar A.I., De Falco I., Della
Cioppa A., Tarantino E. (Eds.) Proceedings of EuroGP 2008, pp.362-
373. Naples. Springer.

[21] Hemberg E., O’Neill M., Brabazon A. (2008). Grammatical Bias and
Building Blocks in Meta-Grammar Grammatical Evolution. In Proceed-
ings of IEEE World Congress on Computational Intelligence, pp. , Hong
Kong, IEEE Press.

[22] JScheme http://jscheme.sourceforge.net/jscheme/main.html.

[23] Karpuzcu U.R. (2005). Automatic Verilog Code Generation through
Grammatical Evolution. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO2005) workshop program, pp. 394-
397, ACM Press.

[24] Lewin B. (2000). Genes VII. Oxford University Press.

[25] Moore J.M., Hahn L.W. (2003). Petri net modeling of high-order genetic
systems using grammatical evolution. BioSystems, 72(1-2), pp.177-186.

[26] Murphy J.E., Carr H., O’Neill M. (2008). Grammatical Evolution for
Gait Retargeting. In Proceedings of Sixth Theory and Practice of Com-
puter Graphics 2008 Conference TPCG08 Eurographics. University of
Manchester, UK.

[27] O’Neill, M. (2007). COMP30290 Natural Computing. http://ncra.
ucd.ie/COMP30290/

[28] O’Neill, M. (2001). Automatic Programming in an Arbitrary Language:
Evolving Programs in Grammatical Evolution. PhD thesis, University
of Limerick.

[29] O’Neill, M., Ryan, C. (2001). Grammatical Evolution, IEEE Trans.
Evolutionary Computation. 2001.

[30] O’Neill, M., Ryan, C. (2003). Grammatical Evolution: Evolutionary Au-
tomatic Programming in an Arbitrary Language. Kluwer Academic Pub-
lishers.

[31] O’Neill, M., Brabazon, A. (2005). Recent Adventures in Grammatical
Evolution. In Proceedings of CMS 2005 Computer Methods and Sys-
tems. Vol.1, pp. 245-253, November 2005, Krakow, Poland.

[32] O’Neill, M. and Brabazon, A. (2006). Grammatical Swarm: The Gen-
eration of Programs by Social Programming. Natural Computing, pp.
443-462 Vol.5 No.4

49



[33] O’Neill, M. and Brabazon, A. (2006). Grammatical Differential Evolu-
tion. International Conference on Artificial Intelligence (ICAI’06), pp.
231-236 CSEA Press Las Vegas, Nevada.

[34] O’Neill, M., Brabazon, A. (2008). Evolving a Logo Design using Linden-
mayer Systems, Postscript and Grammatical Evolution. In Proceedings
of the IEEE World Congress on Evolutionary Computation, pp. 3788-
3794. Hong Kong, 1-6 June 2008. IEEE Press.

[35] O’Neill M., Brabazon A., Hemberg E. (2008). Subtree Deactivation Con-
trol with Grammatical Genetic Programming. In Proceedings of IEEE
World Congress on Computational Intelligence, pp. , Hong Kong, IEEE
Press.

[36] O’Reilly U-M., Hemberg M. (2007). Integrating generative growth and
evolutionary computation for form exploration. Genetic Programming
and Evolvable Machines, 8(2), pp.163-186.

[37] Prusinkiewicz, P. (1990). The Algorithmic Beauty of Plants. Springer-
Verlag. Also available from http://algorithmicbotany.org/papers/

#abop.

[38] Poli, R., Langdon, W.B., McPhee, N.F. (2008). A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk.

[39] Ryan, C., Collins, J.J., O’Neill, M. (1998). Grammatical Evolution:
Evolving Programs for an Arbitrary Language. Proc. of the First Euro-
pean Workshop on GP, pp. 83-95, Springer-Verlag.

[40] An analysis of the MAX problem in genetic programming, Langdon,
W.B. and Poli, R., Genetic Programming,222–230,1997

[41] Elitism reduces bloat in genetic programming,Poli, R. and McPhee, N.F.
and Vanneschi, L.,Proceedings of the 10th annual conference on Genetic
and evolutionary computation, 1343–1344, 2008, ACM New York, NY,
USA

[42] The royal tree problem, a benchmark for single and multi-population
genetic programming, Punch, WF and Zongker, D. and Goodman, ED,
Advances in genetic programming, 299–316, 1996

[43] Tsoulos I.G., Lagaris I.E. (2006). Solving differential equations with
genetic programming. Genetic Programming and Evolvable Machines,
7(1), pp. 33-54.

50


