
GEM - Grammatical Evolution in

Matlab (v0.1)

Erik Hemberg, Michael O’Neill

Natural Computing Research & Applications Group
University College Dublin

Ireland

Technical Report

November 19, 2010

Abstract

GEM is an open source implementation of Grammatical Evolution in

Matlab developed at UCD’s Natural Computing Research & Applications

group. As well as providing the characteristic genotype-phenotypemapper

of GE a search algorithm engine is also provided.

Contents

1 Introduction 2

2 Grammatical Evolution 2

2.1 GE Control Flow . 2
2.2 Grammar Mapping in GE . 4

2.2.1 The Grammar . 5
2.2.2 The Mapping . 6

3 Distribution Contents 7

4 Tutorial 0: The Demo Problems 8

4.1 Symbolic Regression . 8

1

1 Introduction

Grammatical Evolution in Matlab (GEM) was developed at UCD’s Natural
Computing Research & Applications group1. It is an open source implementa-
tion of Grammatical Evolution (GE) [O’Neill and Ryan, 2003] released under
GNU GPL v3.0, which provides a search engine framework in addition to the
genotype-phenotype mapper of GE.

This technical report serves as an introduction to the GEM software pro-
viding guidelines on its installation and use. In this first release some simple
demonstration problems are provided to assist the user to gain an understand-
ing of the code while reading the accompanying tutorials which are provided in
this document and on the code’s website [NCRA, 2010].

Following a brief introduction to Grammatical Evolution in Section 2, we
describe the design of GEM in Section 3, and an introductory tutorials on its
use in Sections 4.

2 Grammatical Evolution

Grammatical Evolution (GE) (e.g., [O’Neill and Ryan, 2003]) is a grammar-
based form of Genetic Programming [Poli et al., 2008]. It is inspired by repre-
sentation in molecular biology and combines this with formal grammars. The
GE system is flexible and allows the use of alternative search strategies, whether
evolutionary, deterministic or of some other approach. This system also includes
the ability to bias the search by changing the grammar used. Since a grammar is
used to describe the structures that are generated by GE, editing the grammar
modifies the output structures. This constraining power is one of GE’s main
features. The genotype-phenotype, i.e. input-output mapping means that GE
allows search operators to be performed on any representation in the algorithm,
e.g. on the genotype (integer or binary chromosomes), as well as on partially
generated phenotypes, and on the completely generated derivation trees or phe-
notypes.

The biological inspiration for GE comes from the generation of a protein from
a sequence of DNA, which contains several mappings. A simplified description
of the generation of a protein from DNA is described in Tab. 1. In Biology,
the genotype, DNA is transcribed to RNA, the RNA is translated to amino
acids, the amino acids create proteins, and the proteins generate a phenotype.
Analogously, for an individual in GE the genotype, binary string, is transcribed
to an integer sequence, the integers are translated to production choices via a
grammar, and the phenotype is the sentence generated from the grammar.

2.1 GE Control Flow

In GE the control flow of an EA in Fig. 1 is extended with a genotype-phenotype
mapping, this is the same as “decoding” in a GA.

1http://ncra.ucd.ie

2

Tab. 1: Comparison of a generation of a protein and the derivation of a sentence
in GE. In Biology the genotype, DNA is transcribed to RNA, the RNA is trans-
lated to amino acids, the amino acids create proteins, and the proteins generate
a phenotype. Analogously, for an individual in GE the genotype, binary string,
is transcribed to an integer sequence, the integers are translated to production
choices via a grammar, and the phenotype is the sentence generated from the
grammar.

Biology Grammatical Evolution

DNA Binary string
⇓ Transcription ⇓

RNA Integer sequence
⇓ Translation ⇓

Amino Acid Production choice
⇓ ⇓

Protein Sentence(Program)
⇓ ⇓

Phenotypic effect Evaluated sentence

The canonical GE uses a standard GA as a search engine, with crossover
and mutation. The steps in a single iteration of GE are generally:

1. Initialization Input in the initial solutions is generated, e.g. uniformly
randomly generated integer sequences

2. Mapping Mapping via a grammar, e.g. CFG (see Section 2.2).

(a) Binary to Integer (Transcription) Binary to integer translation

(b) Integer to String (Translation) Grammar maps integer value to a
sentential form (sequence of symbols).

3. Evaluation The individual solutions are evaluated.

4. Operators Operations on input, e.g. mutation and crossover

(a) Selection Some individuals from the current population are included
in a new population. In tournament selection, a tournament size is
chosen, and a number of individuals equal to the tournament size are
randomly chosen from the population to compete in the tournament.
The individual with the best fitness of the individuals selected for
the tournament wins the tournament and is selected.

(b) Variation operators Individuals are modified by some operators,
e.g. crossover and mutation. In crossover one point in each parent’s
genotype is selected. The parts on each side of the point are joined to
the opposing part from the other parent. This crossover creates two
children consisting of one part from each parent. In mutation each
input codon has a uniform probability of changing to a new uniform
integer value.

3

initialisation

evaluation:
 opt. fit. or max it.

selection

No

termination

Yesoperations

replacement

evaluation:
 opt. fit. or max it.

No Yes

Fig. 1: Flow of a canonical Evolutionary Algorithm. First initialize a population,
then evaluate the population, while not optimum found or not max iterations
reached: select individual solutions from the population, apply operators to the
selected solutions and replace the population.

(c) Replacement A new population is created from the selected popu-
lation and from the current population. If generational replacement
is used, the entire population is replaced

5. Termination When the start symbol has generated a sentence, the geno-
type (input) is extended by wrapping. An individual that is not completely
mapped, even after wrapping, is called an invalid individual.

These steps complete the algorithm.

2.2 Grammar Mapping in GE

The mapping of GE is shown in Fig. 2. There are different spaces, genotype,
phenotype and fitness.

In a Context-Free Grammar the generation of a word is not dependent on the
surroundings, see Booth [Booth, 1967]. A CFG is a four tuple G = 〈N,Σ, R, S〉,
where:

• N is a finite non-empty set of non-terminal symbols.

• Σ is a finite non-empty set of terminal symbols and N ∩Σ = ∅, the empty
set.

4

integer input

derivation tree

grammar

output

fitness

Fig. 2: GE mapping flow: input and grammar are mapped to output that is
evaluated and assigned a fitness

• R is a finite set of production rules of the form R : N 7→ V ∗ : A 7→ α or
(A,α) where A ∈ N and α ∈ V ∗. V ∗ is the set of all strings constructed
from N ∪ Σ and R ⊆ N × V ∗, R 6= ∅.

• S is the start symbol, S ∈ N .

“Context-Free” means that for a rule A → α, A can always be replaced by
α, regardless of context [Harrison, 1978].

2.2.1 The Grammar

For GE a suitable BNF grammar definition must exist. How much domain
knowledge to incorporate is decided by the practitioner, who also defines how
general or specific the Backus Naur Form (BNF) grammar is.

In GE, a BNF-grammar describes the output sentences that can be produced
by the system, as well as the grammar bias.

The Grammar 1 can be used to generate boolean expressions, and <expr> can
be transformed into one of three rules. It can become either (<expr> <biop> <expr>),
<uop> <expr>, or <bool>. A grammar can be represented by the tuple 〈N,Σ, R, S〉.

N = { <expr>, <biop>, <uop>, <bool> }
Σ = { and, or, xor, nand, not, true, false, (,) }
S = { <expr> }

5

<expr> ::= (<expr> <biop> <expr>)

| <uop> <expr>

| <bool>

<biop> ::= and

| or

| xor

| nand

<uop> ::= not

<bool> ::= true

| false

Grammar 1: Example of a grammar for boolean expressions. <expr> has three
production choices, <biop> has four production choices, <uop> has one produc-
tion choice and <bool> has two production choices.

The code produced after mapping a BNF-grammar in GE will consist of
elements of the terminal set Σ. The grammar is used in a generative approach,
whereby the evolutionary process evolves the production rules to be applied
at each stage of a derivation process, starting from the start symbol, until a
complete program is formed. The mapping (derivation) is complete when the
sentence is one that is comprised of only elements of Σ.

2.2.2 The Mapping

The genotype is used to map the start symbol into a sentence, by the BNF-
grammar. The mapping is done by reading input(codons) to generate a corre-
sponding integer value, from which an appropriate production rule is selected
by using the following mapping function:

Rule = c mod r (1)

where c is the codon integer value, and r is the number of rule choices for the
current non-terminal symbol.

Consider the following rule from the grammar in Grammar 1. Given the
non-terminal <biop>, which describes the set of boolean operators that can be
used, there are four production rules to select from. The choices are labeled
from zero.

<biop> ::= and (0)

| or (1)

| xor (2)

| nand (3)

If the codon being read produces the integer 6, then Eq. (1) gives 6 mod 4 = 2,
which would select rule (2) xor. In the derivation <biop> is replaced with xor.

6

input mapping output

44 246 13 49 21 3 <S>

<C> <C>

(0) 44%3=2

g

(1) 246%2=0

<D> <E>

(2) 13%3=1

h

(5) 3%2=1

j

(3) 49%2=1

k

(4) 21%3=0

gjkh

Fig. 3: Example of a derivation tree that generates a word, gjkh, using Gram-
mar 2

Each time a production from a rule with more than one production choice
has to be selected to transform a non-terminal, another codon is read. In this
way the system traverses the genome.

The mapping is deterministic, i.e. the same input sequence will map to the
same output sequence if the grammar is unchanged, each time the same codon
is expressed it will generate the same integer value. But depending on the
derivation context, i.e. the current non-terminal to which the codon is being
applied, a different production rule may be selected, this is called intrinsic poly-
morphism [O’Neill et al., 2003].

While the mapping process in GE occurs and a sentence is being built, it
can also be represented as a derivation tree. A concrete example of mapping in
GE is shown in Fig. 3.

3 Distribution Contents

In the main distribution directory you will see the following files:

gema.m the source file

COPYING contains the text of the GNU GPL version 3.

LICENSE provides the Copyright notice and Licence information for the distribution.

grammars contains grammars

docs documentation for GEM

7

<S> ::= <C>

| <C><C>

| <C><C>

 ::= <D>

| <D><E>

| <E>

<C> ::= g

| h

<D> ::= j

| k

<E> ::= k

| l

| m

Grammar 2: Example of a grammar for words.

4 Tutorial 0: The Demo Problems

The implemented problem is Symbolic Regression [Koza, 1992]

4.1 Symbolic Regression

The sextic function is used here x+ x2 + x3 + x4 + x5 + x6 with 20 fixed values
of x = [−1.0,−0.9, . . . , 1.0]. Fitness is simply the sum of the errors, and an
uncomplicated grammar adopted:

<expr> ::= (<expr> <op> <expr>) | <var>

<op> ::= + | - | .*

<var> ::= x | 1 | 0

Acknowledgments

We would like to thank past and present members of the UCD Natural Comput-
ing Research & Applications group. GEM is influenced by ponyGE [Hemberg
and McDermott, 2010] and GEVA [O’Neill et al., 2008]. This work is done under
Science Foundation Ireland Grant No. 08/IN1/I1868.

References

Taylor L. Booth. Sequential machines and automata theory. Wiley, 1967.

MA Harrison. Introduction to formal language theory. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1978.

8

Erik Hemberg and James McDermott. pomyGE, November 2010. URL http:

//code.google.com/p/ponyge/.

John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). The MIT Press,
December 1992. ISBN 0262111705.

NCRA. NCRA Software, November 2010. URL http://www.ncra.ucd.ie/

Site/Software.html.

M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico. Crossover in Grammatical
Evolution. Genetic Programming and Evolvable Machines, 4(1):67–93, 2003.

Michael O’Neill and Conor Ryan. Grammatical Evolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Kluwer Academic Publishers,
Norwell, MA, USA, 2003. ISBN 1402074441.

Michael O’Neill, Erik Hemberg, Conor Gilligan, Eliott Bartley, James McDer-
mott, and Anthony Brabazon. Geva:grammatical evolution in java. SIGEVO-
lution, 3(2):17–23, Summer 2008.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008. URL http://www.

gp-field-guide.org.uk. (With contributions by J. R. Koza).

9

