Natural Computing Research & Applications Group
School of Computer Science & Informatics
University College Dublin
Technical Report NCRA-TR-2011-05-13

GEM - Grammatical Evolution in
Matlab (v0.2)

Erik Hemberg, Michael O’Neill

erik.hemberg@ucd.ie, m.oneill@Qucd.ie

School of Computer Science & Informatics
University College Dublin
Belfield, Dublin 4
Co. Dublin
Ireland

Abstract
GEM is an open source implementation of Grammatical Evolution in
Matlab developed at UCD’s Natural Computing Research & Applications
group. As well as providing the characteristic genotype-phenotype mapper
of GE a search algorithm engine and a GUI are also provided.

Contents
1 Introduction 2
2 Getting Started Guide 3
3 GUI 3
3.1 Input Fields 4
3.2 Output Fields o 5
4 User Guide 5
4.1 Input Parameters o o 5
4.2 Output 7
4.3 Creating A New Problem 8
4.4 Creating New Operators 9
5 Grammatical Evolution 9
51 GE Control Flow 9
5.2 Grammar Mappingin GE 11
5.2.1 The Grammar 12
5.2.2 The Mapping 12
6 Distribution Contents 14
7 Demos 16
7.1 Symbolic Regression 17
7.2 Symbolic Regression Multicore 17
7.3 Multiobjective Function oL 17
7.4 Financial Modelling L. 17
8 Release notes 18
8.1 Improvements from GEM v0.1 18
8.2 Knownissues 19
1 Introduction

Grammatical Evolution in Matlab (GEM) was developed at UCD’s Natural
Computing Research & Applications group!. It is an open source implementa-
tion of Grammatical Evolution (GE) [O’Neill and Ryan, 2003] released under

Thttp://ncra.ucd.ie

GNU GPL v3.0 , which provides a search engine framework in addition to the
genotype-phenotype mapper of GE.

The goal of GEM is to create a simple, readable and practical Matlab toolbox
for Grammatical Evolution. The source is developed in a imperative script style,
to allow flexible use for beginners and experts. The toolbox aims to provide
demos that allow the users to incorporate their own problems as efficiently as
possibly. The intended users of GEM are those wanting to learn and explore
Grammatical Evolutions capabilities. The GUI enables GEM to be used in
both educational and research contexts. For improvement in speed a version in
a compiled language could be faster, e.g. GEVA [O’Neill et al., 2008].

This report serves as an introduction to the GEM software providing guide-
lines on its installation and use. Some simple demonstration problems are pro-
vided to assist the user to gain an understanding of the code while reading the
accompanying tutorials which are provided in this document and on the code’s
website [NCRA, 2010].

The structure of the report is the following. Section 2 has a user start guide.
Section 3 describes the GUI and Section 4 on page 5 has an extended user guide.
Then following a brief introduction to Grammatical Evolution in Section 5 on
page 9, we describe the distribution contents of GEM in Section 6 on page 14,
and demos in Section 7 on page 16. Finally release notes in Section 8 on page 18.

2 Getting Started Guide

This section contains a start guide for the user. The steps are:
1. Download GEM.tgz
2. Unpack GEM.tgz
3. Add the GEM directory to the Matlab path, e.g addpath(’GEM-v0.2°)
4. Open MATLAB (or run matlab -r gem_gui)
5. (Run the GUI from MATLAB with gem_gui_export (See Section 3))

Now you can try the demos in Section 7 on page 16.

3 GUI

The GUI allows the user access to GEM with some preconfigured settings. Fig. 1
on the next page shows a screenshot of the GUI when it is started. To run an
experiment press Run. When a problem is selected some default parameters are
set.

Fig. 1: GEM GUI

3.1 Input Fields

The GUI interacts with GEM sets the parameters described in Section 4.1 on
the following page. The parameters available from the GUI are:

Problem to chose from, the default values can be found in the config file of
the problem. (See Section 7 on page 16)

Grammar to use. .bnf files are listed. (See GRAMMAR_FILE, param 1 on
the following page)

Population size (See POPULATION_SIZE, param 6 on page 6)

Generations (See GENERATIONS, param 7 on page 6)

Mutation (See MUTATION_OPERATION, param 13 on page 6)

Mutation probability (See MUTATION_PROBABILITY, param 12 on page 6)
Crossover (See CROSSOVER_OPERATION, param 11 on page 6)

Crossover probability (See CROSSOVER_PROBABILITY, param 10 on page 6)

Replacement Some replacement operators can use ELITE_SIZE (See RE-
PLACEMENT, param 27 on page 7 and ELITE_SIZE, param 16 on page 6)

Selection Some selection operators can use TOURNAMENT_SIZE (See SE-
LECTION_OPERATION, param 8 on page 6 and param 9 on page 6)

Initialisation Some initialisation operators can set MAX_DEPTH, TAIL_SIZE,
and INITTAL_.CHROMOSOME_SIZE (See INITTALISATION_OPERATION,
param 24 on page 7, , param 26 on page 7 , param 23 on page 7, and
param 22 on page 7)

Parsimony pressure (See PARSIMONY_PRESSURE, param 17 on the next
page)

Save directory path to where the output is saved

Runs of the experiment that will be executed with different random seeds

3.2 Output Fields

The output values for the results that are plotted in different panels (denoted
by the red digits in Fig. 1):

1. Best individual’s fitness and average population fitness. Note: when
running multi-objective experiments it is still only the best individual
according to the ranking which is show.

2. Best individual’s number of used codons, average population number of
used codons, best individual chromosome size and average population
chromosome size.

3. Ratio of number of calls to the mapping function over the number of
generated individuals. GEM does not allow invalid individuals, but this
shows how many mappings are nessecary in order to generate a valid
individual.

4. The phenotype of the current best individual is shown

4 User Guide

This section describes how to setup a new problem and how to create new
operators.

GEM mainly uses two structures for storing information, param for input
parameters and stats for output and statistics.

4.1 Input Parameters

The parameters are set in the param structure. Currently available parameters
in param:

1. GRAMMAR_FILE is path to grammar file

2. ORDER sorting order, set to: ’descend’ or 'ascend’

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

MIN_FITNESS value of minimum fitness for problem, set to a real value
(—oo < <)

MAX_WRAPS number of wraps, set to a positive integer (Z™)
CODON_SIZE codon range, set to a positive integer (Z™)

POPULATION_SIZE number of individuals in population, set to a posi-
tive integer (Z™)

GENERATIONS number of iterations of the algorithm, set to a positive
integer (Z™)

SELECTION name of selection operation, set to @tournament_selection nsga?2
or @tournament_selection

TOURNAMENT_SIZE number of individuals competing when tournament_selection
and tournament_selection nsga?2 is used, set to a positive integer less or

equal to POPULATION SIZE (See, param 6) (ZT, TOURNAMENT _SIZE <
POPULATION_SIZE)

CROSSOVER_PROBABILITY probability of crossover, set to a real value
between zero and one (x € R,0 <z <1)

CROSSOVER.-OPERATION operator used for crossover, set to @single_point_crossover

MUTATION_PROBABILITY probability of mutating a codon, set to to a
real value between zero and one (z € R,0 < < 1) or a a positive integer
(Z7) for an exact number of mutations per individual;

MUTATION_OPERATION mutation operation, set to @integer_extended nodal mutation
or Quniform_integer mutation

EXTENDED_NODAL_PROBABILITY probability of an extended nodal
mutation event a structural otherwise a structural mutation occurs, set to
a real value between zero and one (z € R,0 <z < 1)

EXTENDED_NODAL_TRIES number of attempts to find a legal nodal
site, set to a positive integer (ZT)

ELITE_SIZE number of elite individuals, set to a positive integer less than
POPULATION SIZE (See, param6) (Z*, ELITE SIZE < POPULATION_SIZE)

PARSIMONY_PRESSURE discriminate on shorter size if fitness is equal
when selecting individuals. Set to integer where 0 is false otherwise true

FEVALS_TIMES_SINGLE used to set maxEvalTimeSingle when using
multicore

NEVALS_AT_ONCE used to set nrOfEvalsAtOnce when using multicore

LOAD_POPULATION name of a saved population, set to a string

21.
22.

23.

24.

25.

26.

27.

4.2

SAVE_POPULATION name of population to save, set to a string

INITTALISATION initialisation operation, set to @ramped_half half initialisation
or Quniform initialisation

INITIAL_.CHROMOSOME_SIZE initial size of input(chromosome) when
uniform initialisation is used, set to a positive integer (Z™)

MAX_DEPTH maximum derivation tree depth when using @ramped half half initialisation,
set to a positive integer (Z™1)

GROW_PROBABILITY probability of Grow algorithm when using the
method @ramped_half half_initialisation otherwise Full is used, set
to a real value between zero and one (x € R,0 < x <1)

TAIL_SIZE ratio existing chromosome size appended consisting of uni-
formly random picked codons @ramped half half initialisation, set
to a a positive real value (R,0 > z)

REPLACEMENT name of replacement operation, set to @replacement nsga2
or @generational replacement

Output

The structure stats is used for output and statistics. The output consists of a
descriptions of the parameters used for the run. Some warnings and errors from
the GE algorithm regarding mapping and fitness evaluation are registred:

NON_TERMINALS_LEFT the individuals is not mapped compeltely

PHENOTYPE_DUPLICATE the phenotype has already been evaluated

EVAL MATLAB eval error/exception is caught

PUIDs (the ratio of production choices used for each id and front, only for

multi-objective problems)

The output for every generation is a row which starts with ITR were columns

are separated by a
1.
2.

A A s

“won
H

and the columns indicate:

ITR

Generation number

Average used codons in the population

Standard deviation of used codons in the population
Average depth in the population

Standard deviation of depth in the population

7. Number of extra calls to fitness evaluation
8. Number of calls to mapping function
9. Number of calls to expression checking
10. Size of fitness evaluation cache
11. Average fitness in the population
12. Standard deviation of fitness in the population
13. Phenotype of best individual
14. Fitness of best individual
15. Used codons in best individual
16. Depth of best individual

The output for every individual is a row which starts with IND were columns

W

are separated by a “,” and the columns indicate:

—_

IND

. Individual number
. Chromosome size
. Phenotype size

. Fitness value

2
3
4
5
6. Number of used codons
7. Max derivation tree depth
8. (Rank, if multi-objective)
9

. (Distance, if multi-objective)

4.3 Creating A New Problem
When creating a new problem for GEM some things need to be considered.
Configuration The parameters for the problem configuration

Fitness Function The fitness function used to evaluate the solutions and as-
sign fitness

Grammar The grammar used to create solutions

Valid solutions Which solutions are valid given the problem and the environ-
ment. This is for cases that cannot be encoded in the grammar, or are
more easily implemented in a separate function.

4.4 Creating New Operators

Set the call to the operator in the param if there already is an existing operator,
e.g. crossover and mutation.

5 Grammatical Evolution

Grammatical Evolution (GE) (e.g., [O’Neill and Ryan, 2003]) is a grammar-
based form of Genetic Programming [Poli et al., 2008]. Tt is inspired by repre-
sentation in molecular biology and combines this with formal grammars. The
GE system is flexible and allows the use of alternative search strategies, whether
evolutionary, deterministic or of some other approach. This system also includes
the ability to bias the search by changing the grammar used. Since a grammar is
used to describe the structures that are generated by GE, editing the grammar
modifies the output structures. This constraining power is one of GE’s main
features. The genotype-phenotype, i.e. input-output mapping means that GE
allows search operators to be performed on any representation in the algorithm,
e.g. on the genotype (integer or binary chromosomes), as well as on partially
generated phenotypes, and on the completely generated derivation trees or phe-
notypes.

The biological inspiration for GE comes from the generation of a protein
from a sequence of DNA, which contains several mappings. A simplified de-
scription of the generation of a protein from DNA is described in Tab. 1 on the
following page. In Biology, the genotype, DNA is transcribed to RNA, the RNA
is translated to amino acids, the amino acids create proteins, and the proteins
generate a phenotype. Analogously, for an individual in GE the genotype, bi-
nary string, is transcribed to an integer sequence, the integers are translated to
production choices via a grammar, and the phenotype is the sentence generated
from the grammar.

5.1 GE Control Flow

In GE the control flow of an EA in Fig. 2 on page 11 is extended with a genotype-
phenotype mapping, this is the same as “decoding” in a GA.

The canonical GE uses a standard GA as a search engine, with crossover
and mutation. The steps in a single iteration of GE are generally:

1. Initialization Input in the initial solutions is generated, e.g. uniformly
randomly generated integer sequences

2. Mapping Mapping via a grammar, e.g. CFG (see Section 5.2 on page 11).

(a) Binary to Integer (Transcription) Binary to integer translation

(b) Integer to String (Translation) Grammar maps integer value to a
sentential form (sequence of symbols).

3. Evaluation The individual solutions are evaluated.

Tab. 1: Comparison of a generation of a protein and the derivation of a sentence
in GE. In Biology the genotype, DNA is transcribed to RNA, the RNA is trans-
lated to amino acids, the amino acids create proteins, and the proteins generate
a phenotype. Analogously, for an individual in GE the genotype, binary string,
is transcribed to an integer sequence, the integers are translated to production
choices via a grammar, and the phenotype is the sentence generated from the

grammar.
Biology Grammatical Evolution
DNA Binary string
U Transcription U
RNA Integer sequence
U Translation U
Amino Acid Production choice
4 4
Protein Sentence(Program)
U U
Phenotypic effect Evaluated sentence

4. Operators Operations on input, e.g. mutation and crossover

()

(c)

Selection Some individuals from the current population are included
in a new population. In tournament selection, a tournament size is
chosen, and a number of individuals equal to the tournament size are
randomly chosen from the population to compete in the tournament.
The individual with the best fitness of the individuals selected for
the tournament wins the tournament and is selected.

Variation operators Individuals are modified by some operators,
e.g. crossover and mutation. In crossover one point in each parent’s
genotype is selected. The parts on each side of the point are joined to
the opposing part from the other parent. This crossover creates two
children consisting of one part from each parent. In mutation each
input codon has a uniform probability of changing to a new uniform
integer value.

Replacement A new population is created from the selected popu-
lation and from the current population. If generational replacement
is used, the entire population is replaced

5. Termination When the start symbol has generated a sentence, the geno-
type (input) is extended by wrapping. An individual that is not completely

mapped, even after wrapping, is called an invalid individual.

These steps complete the algorithm.

10

evaluation:
opt. fit. or max it.
No

selection

operations

evaluation:
opt. fit. or max it.

Yes

Fig. 2: Flow of a canonical Evolutionary Algorithm. First initialize a population,
then evaluate the population, while not optimum found or not max iterations
reached: select individual solutions from the population, apply operators to the
selected solutions and replace the population.

replacement

5.2 Grammar Mapping in GE

The mapping of GE is shown in Fig. 3 on the next page. There are different
spaces, genotype, phenotype and fitness.

In a Context-Free Grammar the generation of a word is not dependent on the
surroundings, see Booth [Booth, 1967]. A CFG is a four tuple G = (N, %, R, S),
where:

e N is a finite non-empty set of non-terminal symbols.

e Y is a finite non-empty set of terminal symbols and N NY = (), the empty
set.

e R is a finite set of production rules of the form R: N +— V*: A+ « or
(A,) where A € N and a € V*. V* is the set of all strings constructed
from NUYX and RC N x V*, R #0.

e S is the start symbol, S € N.

“Context-Free” means that for a rule A — «, A can always be replaced by
a, regardless of context [Harrison, 1978].

11

integer input grammar

N/

derivation tree

:

output

:

fitness

Fig. 3: GE mapping flow: input and grammar are mapped to output that is
evaluated and assigned a fitness

5.2.1 The Grammar

For GE a suitable BNF grammar definition must exist. How much domain
knowledge to incorporate is decided by the practitioner, who also defines how
general or specific the Backus Naur Form (BNF) grammar is.

In GE, a BNF-grammar describes the output sentences that can be produced
by the system, as well as the grammar bias.

The Grammar 1 on the following page can be used to generate boolean ex-
pressions, and <expr> can be transformed into one of three rules. It can become
either (<expr> <biop> <expr>), <uop> <expr>, or <bool>. A grammar can
be represented by the tuple (N, %, R, S).

N = { <expr>, <biop>, <uop>, <bool> }
Y = { and, or, xor, nand, not, true, false, (,) }
S = { <expr> }

The code produced after mapping a BNF-grammar in GE will consist of
elements of the terminal set ¥. The grammar is used in a generative approach,
whereby the evolutionary process evolves the production rules to be applied
at each stage of a derivation process, starting from the start symbol, until a
complete program is formed. The mapping (derivation) is complete when the
sentence is one that is comprised of only elements of X.

5.2.2 The Mapping

The genotype is used to map the start symbol into a sentence, by the BNF-
grammar. The mapping is done by reading input(codons) to generate a corre-

12

<expr> ::= (<expr> <biop> <expr>)
| <uop> <expr>

| <bool>

<biop> ::= and

| or

| xor

| nand

<uop> ::= not

<bool> ::= true

| false

Grammar 1: Example of a grammar for boolean expressions. <expr> has three
production choices, <biop> has four production choices, <uop> has one produc-
tion choice and <bool> has two production choices.

sponding integer value, from which an appropriate production rule is selected
by using the following mapping function:

Rule = ¢ mod r (1)

where ¢ is the codon integer value, and r is the number of rule choices for the
current non-terminal symbol.

Consider the following rule from the grammar in Grammar 1. Given the
non-terminal <biop>, which describes the set of boolean operators that can be
used, there are four production rules to select from. The choices are labeled
from zero.

<biop> ::= and 0)
| or €D
| xor (2)
| nand (3)

If the codon being read produces the integer 6, then Eq. (1) gives 6 mod 4 = 2,
which would select rule (2) xor. In the derivation <biop> is replaced with xor.

Each time a production from a rule with more than one production choice
has to be selected to transform a non-terminal, another codon is read. In this
way the system traverses the genome.

The mapping is deterministic, i.e. the same input sequence will map to the
same output sequence if the grammar is unchanged, each time the same codon
is expressed it will generate the same integer value. But depending on the
derivation context, i.e. the current non-terminal to which the codon is being
applied, a different production rule may be selected, this is called intrinsic poly-
morphism [O’Neill et al., 2003].

While the mapping process in GE occurs and a sentence is being built, it
can also be represented as a derivation tree. A concrete example of mapping in
GE is shown in Fig. 4 on the next page.

13

input mapping output

44 | 246 |13 |49 |21 (3 <S> - gjkh -

(0) 44%3=2

<C> | <C>)

(1) 246%2=0 [(2) 13%3=1 |(5) 3%2=1
Y

<D> | <E>

(3) 49%2=1\(4) 21%3=0

Fig. 4: Example of a derivation tree that generates a word, gjkh, using Gram-
mar 2 on the next page

6 Distribution Contents

In the main distribution directory you will see the following files:

Contents.m Matlab contents file
COPYING contains the text of the GNU GPL version 3.
create_individual.m creating new individuals

LICENSE provides the Copyright notice and Licence information for the distri-
bution.

gema.m the entry file, contains the algorithm
gem_gui.m the GUI

gem_gui.mat resource file for the GUI
get_grammar.m parse a BNF grammar

map-individual.m the GE mapping from genotype to phenotype of an individ-
ual

financial modelling files for financial modelling example, see Section 7.4 on
page 17

table.csv data file

14

<S> ::= <C>
| <C><C>
| <C><C>
 ::= <D>
| <D><E>
| <E>
<C> ::= g
| h
<D> ::=j
| k
<E> ::=k
[1
| m

Grammar 2: Example of a grammar for words.

daily return.m Calculates the daily return dr = (p(t) —p(t —1)/p(t —1)

financial modelling config.m Configurations for financial modelling
problem

financial modelling ff.m Calls the fitness function for financial mod-
elling

individual validation.m Check solution validity

simple moving average.m Calculate simple moving average of the data
with the window size

trading fitness.m Calculate the fitness when trading with buy and sell
signals

grammars contains grammars

sr.bnf symbolic regression example grammar
sr_xy.bnf multiobjective example grammar

trade_rules.bnf financial modelling grammar
docs documentation for GEM

multiobjective function files for multiobjective example, see Section 7.3 on
page 17

individual validation.m Check solution validity

multiobjective function config Configurations for multiobjective func-
tion

multiobjective function ff.m Calls the fitness function

operators the operators

15

generational replacement.m Replace the entire old population with the
new population

integer_extended nodal mutation.m Mutates the individuals n times
on leafs or nodes

ramped-half half initialisation Ramps the population to full depth
or grow to maximum depth.

replacement nsga2.m Replacement using NSGA-II

single point_crossover.m One crossover point is randomly picked for
each parent.

tournament_selection.m Select a new population by selecting individu-
als using a tournament

tournament_selection nsga2.m Select a new population using a tourna-
ment based on rank

uniform initialisation.m Uniformly generate integer inputs

uniform integer mutation.m Mutates an individual uniformly with uni-
form probability

symbolic_regression files for the symbolic regression example, see Section 7.1

on the following page.

symbolic regression_config.m Configurations for symbolic regression
problem

symbolic regression_ff.m Calls the fitness function

individual validation.m Check solution validity

symbolic regressionmulticore files for the symbolic regression using multi-

7

core example, see Section 7.2 on the next page

symbolic regressionmulticore_config.m Configurations for symbolic
regression multicore problem
symbolic_regressionmulticore_ff.m Calls the fitness function

individual validation.m Check solution validity

Demos

A number of different problems that highlight the features of GEM are presented
in this section:

e Multicore use
e Mulitobjective function

e Financial application

By default all the demos disallow identical individuals.
NOTE: the default settings of the demos are non-optimal and used for

purely illustrational purposes.

16

7.1 Symbolic Regression

The implemented problem is Symbolic Regression [Koza, 1992]. The sextic
function is used here f = x + 22 + 23 + 2% + 2° 4+ 25 with 20 fixed values
of x = [-1.0,-0.9,...,1.0]. Fitness is calculated by the mean squared error,
F = 1/|x| Zlilo(f(%) — f(#))? and the fitness is minimized. The grammar
used is:

<E> ::= (<E> <0> <E>) | <>
<0> =4+ | -] Lk
V> ::=x] 110

7.2 Symbolic Regression Multicore

This problem uses the multicore package http://www.mathworks.com/matlabcentral/
fileexchange/13775 by Markus Buehren to parallelize the fitness function eval-
uations. The setup is the same as in Section 7.1. See the multicore documenta-

tion for more information.

7.3 Multiobjective Function
From Zitzler et al. [Zitzler et al., 2000] Comparison of multiobjective EAs. The

function is the first test function T7. Minimize F' = [f1(x1), f2(x)] where
fi(xr) =1
fa(x) =g(x)h(f1(21), 9(x))

g(za, ..., Tm) :1+9><in
i=2

h(f1,9) =1—=+/fi/g

where x = [21,...,m],m = 30,2 € [0,1]. The pareto optimal front is formed
with g(x) =1 The grammar generates an array of simplified real values:

<A> ::=x = [];

 ::= <d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>, <d>, <d>,<d>,
<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>,<d>, <d>,<d>,<d>,<d>,<d>
0l o0.1]10.21]0.3]0.4]10.5]0.6|0.7]10.81]0.91]1

<d> ::

The representation of real values in this grammar is simplified to values with
one decimal.

7.4 Financial Modelling

In this problem you are evolving a rule to predict a buy or sell signal. The
fitness function is maximized and calculated as follows. From the raw data you
first get the daily return, which is given by:

return(t) = price(t) — price(t — 1)/price(t — 1)

17

Then you are applying the evolved rule using a moving-window to cover
all the training cases, and you maintain a sum whose elements are calculated
from each point in the time-series by multiplying the signal (1 or —1) that was
generated in day t — 1 with the daily return of day t. The you get the average by
diving with the number of training days. This quantity should be maximised.

A moving average is a type of finite impulse response filter used to analyze a
set of data points by creating a series of averages of different subsets of the full
data set. It is commonly used with time series data to smooth out short-term
fluctuations and highlight longer-term trends or cycles. The threshold between
short-term and long-term depends on the application. Given a series of numbers
and a fixed subset size, the moving average can be obtained by first taking the
average of the first subset. The fixed subset size is then shifted forward, creating
a new subset of numbers, which is averaged.

The grammar below is used, where the closing price of a stock in a particular
day, and a simple moving average is compared to determine the signal. It is
parametrised with the number of days used for smoothing - starting from 5 to
100 with a step of 5.

<CODE> ::= for t = 1l:size(data,1) <expr> end;

<expr> ::= if <op>(smas(t,<integer>), data(t)) <expr> else <expr> end;
| <signal>

<signal> ::= signals(t) = 1; | signals(t) = -1;

<integer> ::=5 | 10 | 156 | 20 | 256 | 30 | 35 | 40 | 45 | 50 | 55

| 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 | 100
|

<op> ::= le ge

smas (t,i,data) is a data structure containing all the possible moving av-
erages. This will increase the memory usage but significantly reduces the run
time.

table.csv contains daily data from S&P 500 from 1980 to 20112. This is
loaded into data and then the adjusted closing price is used.

8 Release notes
This section contains release notes.

8.1 Improvements from GEM vO0.1

e More demos

e Multiobjective fitness function and operators

%http://finance.yahoo.com/q/hp?s="GSPC&a=00&b=3&c=1980&d=04&e=30&f=2011&g=d

18

8.2 Known issues

e The names of the rules in grammar can change the ordering. This is
important since in BNF form the first rule is the start symbol, and most
thevrefore be maintained by the parsing

Acknowledgments

We would like to thank past and present members of the UCD Natural Comput-
ing Research & Applications group. GEM is influenced by ponyGE [Hemberg
and McDermott, 2010] and GEVA [O’Neill et al., 2008]. This work is done under
Science Foundation Ireland Grant No. 08/IN1/I1868.

References

Taylor L. Booth. Sequential machines and automata theory. Wiley, 1967.

MA Harrison. Introduction to formal language theory. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1978.

Erik Hemberg and James McDermott. ponyGE, November 2010. URL http:
//code.google.com/p/ponyge/.

John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection (Complex Adaptive Systems). The MIT Press,
December 1992. ISBN 0262111705.

NCRA. NCRA Software, November 2010. URL http://www.ncra.ucd.ie/
Site/Software.html.

M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico. Crossover in Grammatical
Evolution. Genetic Programming and Evolvable Machines, 4(1):67-93, 2003.

Michael O’Neill and Conor Ryan. Grammatical Fvolution: Evolutionary Auto-
matic Programming in an Arbitrary Language. Kluwer Academic Publishers,
Norwell, MA, USA, 2003. ISBN 1402074441.

Michael O’Neill, Erik Hemberg, Conor Gilligan, Eliott Bartley, James McDer-
mott, and Anthony Brabazon. Geva:grammatical evolution in java. SIGEVO-
lution, 3(2):17-23, Summer 2008.

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field
guide to genetic programming. Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk, 2008. URL http://wuw.
gp-field-guide.org.uk. (With contributions by J. R. Koza).

E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary computation, 8(2):173-195, 2000.
ISSN 1063-6560.

19

