
Effects of Swarm Size on Attractive-Repulsive Particle
Swarm Optimisation

Conor Murphy

School of Computer Science & Informatics
University College Dublin

Abstract

Particle Swarm Optimisation (PSO) is a type of global optimisation technique using swarm
intelligence. Each particle within a swarm searches the solution space for the best solution.

Competitive PSO methods introduce some sort of competition between these particles or groups of
particles. Repulsive PSO involves there being some sort of polarity between these different particles or
subgroups. Attractive-repulsive PSO alternates between periods of attraction and periods of repulsion
to prevent premature convergence. Charged PSO involves some particles having a neutral charge and

others having a positive charge to create repulsion and thus reduce the likelihood of premature
convergence. Predator-prey PSO introduces predator particles to the swarm which are attracted to the
strongest of the swarm or prey particles. The weaker particles are then repelled by the predators so as
to avoid premature convergence to local maxima. This paper will determine whether swarm size has

any impact on competitive techniques using attratctive-repulsive PSO as an example.

1. Introduction

Particle Swarm Optimization is a versatile population-based optimization strategy first
suggested by Kennedy[Kennedy95]. The initial concept was inspired by the idea of the flight of birds
and the way that they come to rest at a roosting spot. The flock of birds is represented by the swarm of
particles which flow through the solution space looking for the best solution. These particles flock
towards areas where the current best solution has been found in the hope of finding better solutions in
that seemingly solution-rich area.

PSO is considered a type of evolution algorithm and wishes to address the problems
associated with evolutionary algorithms such as premature convergence. This is when a sub-optimal
solution is settled on instead of further exploration and the possible discovery of a better solution. The
manner in which particles are flying around the search space means they discover new solutions easily
but as they all move toward the current best solution clustering can occur and lead to the PSO getting
stuck at a local maximum due to a decline in diversity. As with all evolutionary algorithms diversity is
essential to continuing to find better solutions.

By introducing the idea of certain particles being competitive or reversing the concept of
particles flowing towards the current best solution once diversity reaches a certain low, we can ensure
that other areas of the solution space get looked at and clustering around these local best is reduced.
This is where the concept of competitive PSO comes in. Competitive PSO concepts such as attractive-
repulsive PSO (ARPSO)[Blackwell04][Vester02], charged PSO[Blackwell02] and predator-prey
PSO[Silva02] utilize some sort of difference between groups of particles to ensure diversity is
maintained.

Of course another factor in ensuring that diversity is maintained is to have an adequate sized
swarm. The swarm should be of a necessary size to ensure that the optimum solution can be found
whilst not being so large that it adversely affects the performance of the algorithm. Different functions
obviously perform under different conditions and this paper aims to test two different functions with
varying swarm sizes to see if a pattern emerges of what is the best swarm size for competitive particle
swarm optimizations.

We will present here an introduction to particle swarm in general and a description of each of
the competitive PSO techniques described above, followed by details of the experiment carried out and
our findings and thoughts on further work which could be carried out.

2. Particle Swarm Optimization

The Particle Swarm Optimization involves a swarm of particles in a n-dimension search
space. These particles move about this search space looking for the best solution. Each individual
particle remembers the best position within the search space and the best solution found by the swarm
so far. This best solution is established by some fitness function appropriate to the search space. The
particle also has a position vector and a velocity vector which governs where the particle is and where
it is going to go to. The velocity vector is decided by determining which way to go to get to the global
best and which way to go to the particles personal best, a mid-way point between the two is then
determined and this is the new velocity vector.

As each time interval occurs the particle updates it's position by adding the position it was
previously in to the velocity it currently has to determine a new position. Should this new position be
better than that of either the particle's personal best of the swarm's global best then the values will be
updated with the new best position.

3. Attractive-Repulsive PSO

Attractive-repulsive PSO (ARPSO) involves the optimization process being divided into two
parts, attraction and repulsion. The attraction phase is basically the same as the basic PSO algorithm. In
the basic PSO algorithm particles tend to attract to each other due to the level of communication
between particles, this is exactly what is required in the attraction phase so it stays the same. In the
repulsion phase though we want particles to move away from those positions that are seen as best and
explore new sections of the search space. This is done by reversing the formula used to update the
velocity and making the particle move away from it's personal best and the swarms global best.

Due to the clustering of the swarm in the attraction phase, diversity tends to be compromised
and decrease. It is when the diversity has dropped below an acceptable level that we want the repulsion
stage to kick in and offer more variety to where particles are searching. We do not however want to
constantly stay in this repulsion stage as instead of finding new global best and searching these new
global bests further we may just keep moving away from these global bests. Therefore when the
diversity hits a specified high we want to switch back to the attraction stage so as to explore the new
found areas of interest further.

4. Charged PSO

The charged particle swarm optimization is quite similar to the attractive-repulsive model.
Particles within the swarm are designated either a positive charge or a negative charge. These charged
particles are repelled from each other and end up moving in different directions and thus uncovering
different and hopefully improved solutions[Blackwell02]. An adaptation of this is to also have a neutral
swarm which would not be repulsed by positive nor negative particles and would fly towards the global
best and the negative and positive particles would circle around the neutral swarm looking for new
solutions.

In order to charge the particles an alteration needs to be made to the velocity update function.
Each particle is assigned a value of 0 if neutral, a value greater than zero if positive and less than zero
if it is a negative particle.

5. Predator-Prey PSO

Predator-Prey particle swarm optimization is inspired by the interaction between animals in
nature and the predators who hunt these animals. The idea is that a herd of animals(the prey particles
clustered around the best solution) would be attacked by the predator particle. The prey particles would
then scatter away from their attacker(the predator particle), thus moving out around the search space
away from the convergence they were at and begin to search for new solutions in areas where they will
not be attacked by the predator.

The predator particle pursues the strongest individual in the prey swarm. This will be the
particle who has found the global best. According to the description of the predator particle in
[Silva02] the predator has an upper limit placed on its velocity to control the speed at which the
predator catches it's prey. There is also a fear probability attached to the prey particles which randomly
decides where the prey is to escape to when presented with an attack from the predator. This fear factor
is increased exponentially depending on the distance between the predator and the prey.

6. Experiment

For the experiment we used two different functions, Rastrigin and Ackey. They are detailed below.
Both functions are non-linear multi modal functions but vary in their steepness. Both are difficult to
solve due to their large search spaces and presence of many local maxima.

Rastrigin:

Ackey:

Each function was tested with a dimension of 20 and was evaluated 20,000 times. We varied
the swarm size with each test, beginning with 20, then 50, then 80 and finally 100. After this we took
larger jumps in the swarms size from 200 to 500 and finally to 800 and 1,000 to see whether or not
exceptionally large swarms improved the result considerably. The details of the rest of the parameters
were followed as in [Vester02]. Results were taken from an average of 50 runs. The experiment was
implemented using [SourceCode] which was referenced in [Vester02].

7. Results

The results from the Rastrigin function are compiled in table 1. They show a clear
improvement in the best result as the swarm increases in size and also a clear increase in the time taken
for the 50 runs to complete as the swarm size becomes larger.

If we break the table of results in two parts, the first part being from 20 to 100 and the second
from 200 to 1,000 we notice how the improvement found for each part is greatly different. Each halves
swarm size increases by the same factor yet in the first half we notice a 15% improvement in the result
given at the expense of just a 0.7% increase in time spent obtaining the solution. In the second half of

the table there is a similar improvement in the results obtained yet it is still less than that of the first
half at only 14%. Yet this improvement is at the expense of a 19% increase in the time spent to reach
those results. This shows that while a larger swarm size does improve the results we get, it begins to
start costing us too much in time spent for the function to complete once the size of the swarm reaches
a certain point.

Table 1: Results from the Rastrigin function carried out over 50 runs with dimension 20 and 20,000
evaluations per run.

Swarm Size Best Average Result Time
(secs)

20 141.368297 13.4

50 129.883767 13.3

80 123.778254 13.5

100 122.581813 13.5

200 119.946907 13.8

500 110.415802 14.9

800 105.406012 16.0

1,000 104.351577 16.5

The results of the Ackey function are presented in table 2. Again we see a clear trend of an
improvement in the results shown as the swarm size increases. The time taken to get theses results also
increases with Ackey as it did with Rastrigin. Again if we break the table up into two halves as we did
with the Rastrigin function we will notice that the first half shows a much better return. From a swarm
size of 20 to a swarm size of 100 there is a 7.7% improvement in the results obtained at an expense of
1.5% more time taken. The second half shows an 8% improvement at the expense of 20% more time
taken. This again shows that eventually the size of the swarm becomes a negative factor on the time
taken to produce a result.

Table 2: Results from the Ackey function carried out over 50 runs with dimension 20 and 20,000
evaluations per run.

Swarm Size Best Average Result Time
(secs)

20 1.952897 12.8

50 1.838701 12.7

80 1.824146 12.9

100 1.813096 12.7

200 1.771412 12.8

500 1.684667 14.0

800 1.641820 15.4

1,000 1.520966 15.4

8. Conclusions

In conclusion we can establish that increased swarm size means that there are more particles
searching for solutions and thus the solutions provided improve as the amount of particles increases.
This however leads to the function taking longer to finish a run and has a negative affect on the
performance of the algorithm. Obviously various different problems will require different swarm sizes.
From our results we can determine that once the size of the swarm goes over 100 there does appear to
be a detrimental effect on the time taken to produce results.

9. Future Work

Future work which would be appropriate to this paper would be to apply the same concept to
the charged particle swarm and predator-prey particle swarm optimizations which were detailed in
sections 4 and 5 above. The same principle of trying out different sized swarms to determine what
affect if any the amount of particles has on a function's performance could be applied to both. This
would then help to determine whether the trends we saw of improved results and increased time taken
to obtain these results as the swarm grows, are applicable to many competitive particle swarm
optimizations and not just to attractive-repulsive as we have shown. Predator-prey in particular would
be interesting if the concept of an atomic type swarm (neutral particles flying towards current best
while negative and positive particles fly around it) and varying the swarm sizes of one of the three
groups and seeing what difference if any occurs.

Another idea for further work in this area would be to try the experiment out on more than just
the two functions we tried. DeJong and Griewank functions would be just two more functions on
which the experiment could be tried out on.

References

[Kennedy95] Kennedy, J. and Eberhart, R. C., “Particle Swarm Optimization”, Proc. IEEE
International Conference on Neural Networks, NJ, 1995.

[Vester02] Vesterstrøm, J. and Riget, J., “Particle Swarms
Extensions for improved local, multi-modal, and dynamic search
in numerical optimization”, Master's Thesis, 2002

[Blackwell04] Blackwell, T. and Branke, J., “Multi-swarm optimization in dynamic environments”,
In Applications of Evolutionary Computing, vol 3005 of LNCS, 2004

[Blackwell02] T.M. Blackwell and P.J. Bentley., “Dynamic Search with Charged Swarms”, In
Proceedings of the Genetic and Evolutionary Computation Conference, 2002.

[Silva02] A. Silva, A. Neves, and E. Costa. “An Empirical Comparison of Particle Swarm and
Predator Prey Optimization”, Proceedings of the Thirteenth Irish Conference on
Artificial Intelligence and Cognitive Science, 2002.

[Bergh01] F. van den Bergh, A.P. Engelbrecht, “Effects of Swarm Size on Cooperative Particle
Swarm Optimizers”, Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO),2001

[SourceCode] http://www.daimi.au.dk/~jve/thesis/source_code/

