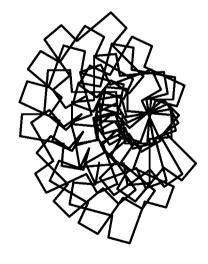
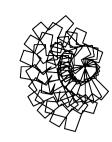
Pattern Classification with GP

Alexandros Agapitos

Natural computing Research and Applications group UCD Complex and Adaptive Systems Lab

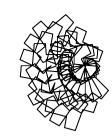


Outline



- Brief recap of Genetic Programming.
- Pattern classification with Genetic Programming.
 - Feature construction.
 - Classifier induction.
 - Ensemble induction.
- Classifier generalisation
 - Model selection based on a validation dataset.

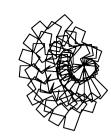
Components of an evolutionary problem solver



1. Fitness evaluation.

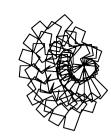
Fitness stands for solution quality.

Components of an evolutionary problem solver



- 1. Fitness evaluation.
 - Fitness stands for solution quality.
- 2. Reproduction.
 - Crossover.
 - Mutation.

Components of an evolutionary problem solver

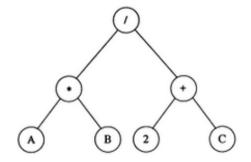


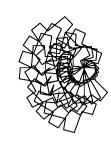
- 1. Fitness evaluation.
 - Fitness stands for solution quality.
- 2. Reproduction.
 - Crossover.
 - Mutation.
- 3. Selection.
 - Parent selection.
 - Survival selection.

Program initialisation

Full method:

- Choose a function as the root.
- Recursively assign functions to the child nodes, until max. depth is reached at which point we chose a terminal.

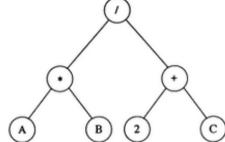




Program initialisation

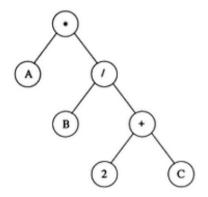
Full method:

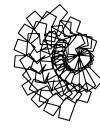
- Choose a function as the root.
- Recursively assign functions to the child nodes, until max. depth is reached at which point we chose a terminal.



Grow method:

- Choose a function as the root.
- A function or a terminal can be assigned to a child node at any depth.





Program initialisation

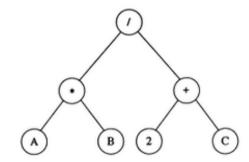
Full method:

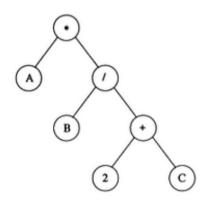
- 1. Choose a function as the root.
- 2. Recursively assign functions to the child nodes, until max. depth is reached at which point we chose a terminal.

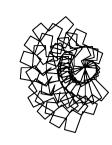
- Choose a function as the root.
- 2. A function **or** a terminal can be assigned to a child node at any depth.

Ramped-half-and-half method:

- 50% full, 50% grow.
- Max. depth is ramped, so individuals are created in a range of depths.

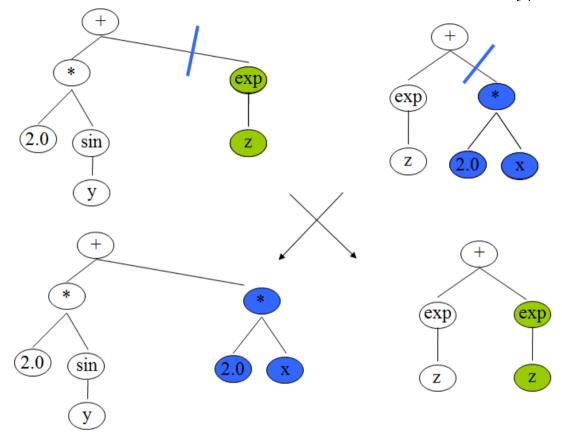






Crossover

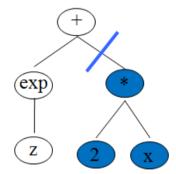
- 1. Select two parents.
- 2. Independently pick random nodes.
- 3. Swap sub-trees.

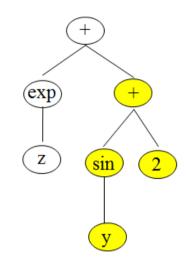


Mutation

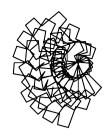
Sub-tree mutation:

- 1. Randomly pick a node.
- 2. Delete sub-tree at selected node.
- 3. Generate random sub-tree (as per initialisation) in its place.



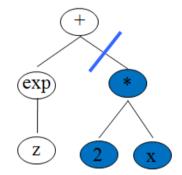


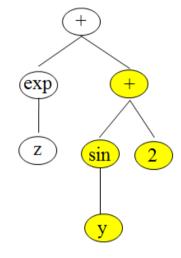
Mutation



Sub-tree mutation:

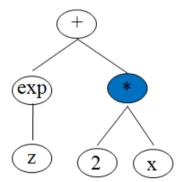
- 1. Randomly pick a node.
- 2. Delete sub-tree at selected node.
- 3. Generate random sub-tree (as per initialisation) in its place.

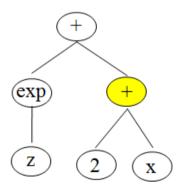




Point mutation:

- 1. Randomly pick a node.
- 2. A terminal is replaced by another terminal, or a function is replaced by another function of the same arity.

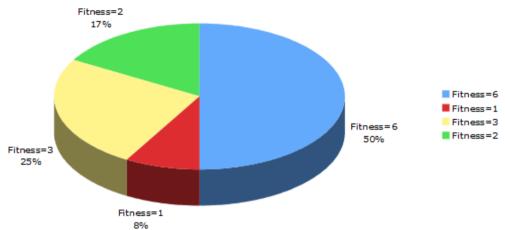




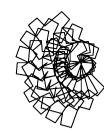
Selection

Fitness proportionate selection:

- High selection pressure earlier on.
- Low selection pressure later.

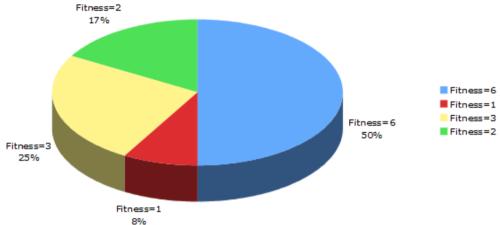


Selection



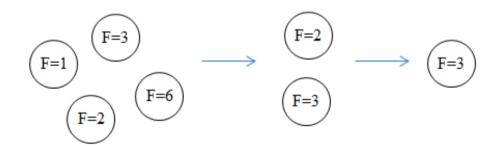
Fitness proportionate selection:

- High selection pressure earlier on.
- Low selection pressure later.



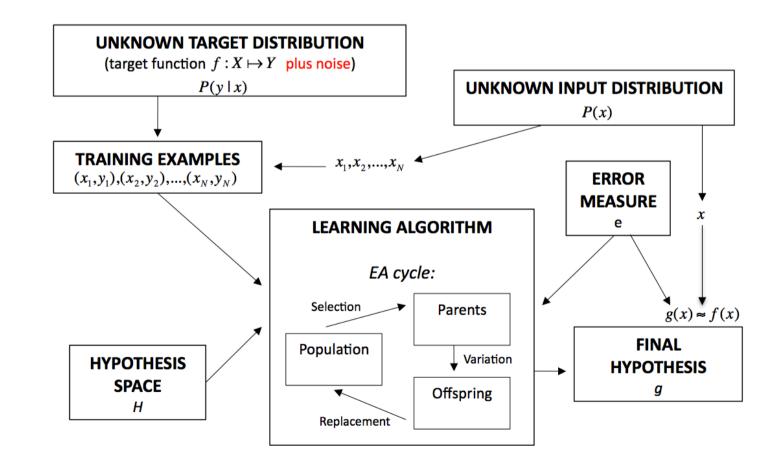
Tournament selection:

- Select *k* individuals at random.
- Best of k individuals becomes parent.
- Selection pressure easily adjustable.

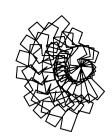


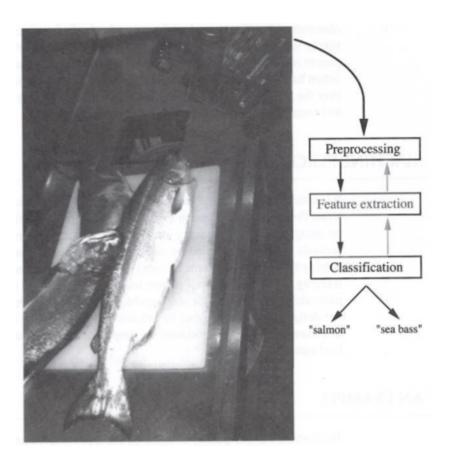
Pattern classification

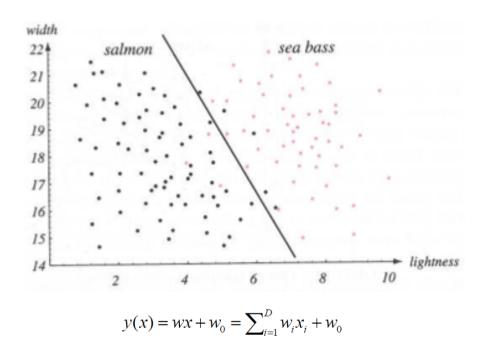
- The goal of classification is to take an input vector x and to assign it to one of K discrete classes C_k, k=1, ...K.
- The input vector is called *feature* vector.
- Supervised learning induces a model based on a training set of labelled examples.



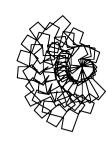
An example: Fish classification





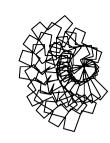


GP in classification



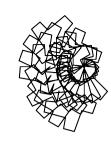
- Pre-processing
 - Feature selection.
 - Feature construction.

GP in classification



- Pre-processing
 - Feature selection.
 - Feature construction.
- Model induction
 - Decision trees (discrete-valued functions)
 - Discriminant functions (real-valued functions)

GP in classification



- Pre-processing
 - Feature selection.
 - Feature construction.
- Model induction
 - Decision trees (discrete-valued functions)
 - Discriminant functions (real-valued functions)
- Ensemble classifiers

Pre-processing: Data transformations

The goal is to perform a transformation of representation, which, given the original vectors of features F_0 , creates a new representation F_0 that maximises some criterion.

- 1. Feature selection: The resulting representation is a subset of the original one.
- **2. Feature weighting:** The transformation method assigns weights to particular attributes. The weight reflects the relative importance of an attribute.
- 3. Feature construction: New features are created as non-linear transformations of existing features.

Pre-processing: Data transformations

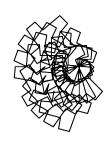
The goal is to perform a transformation of representation, which, given the original vectors of features F_0 , creates a new representation F_0 that maximises some criterion.

- 1. Feature selection: The resulting representation is a subset of the original one.
- **2. Feature weighting:** The transformation method assigns weights to particular attributes. The weight reflects the relative importance of an attribute.
- 3. Feature construction: New features are created as non-linear transformations of existing features.

An important consideration:

Both feature selection and feature construction are somewhat inherent in the GP learning process.

GP-based Feature Construction

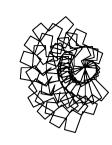


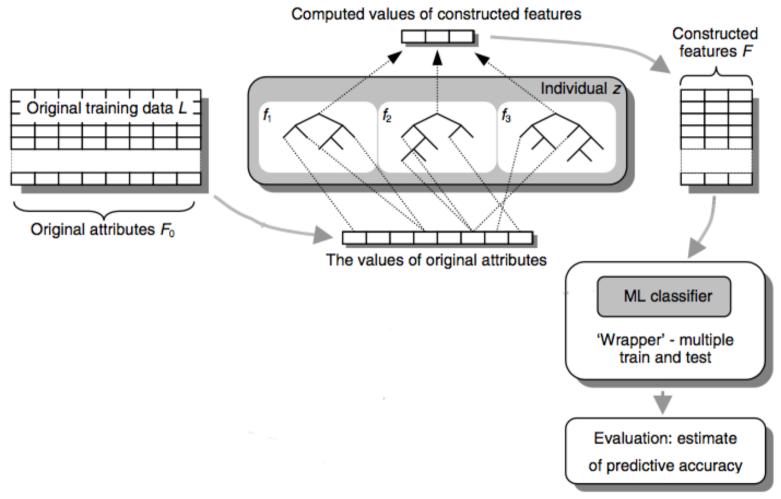
1. Filter approach: Here the pre-processing is performed before processing with the model induction. Usually, some kind of statistical, logical or information theoretic criterion is used as the basis of pre-processing.

GP-based Feature Construction

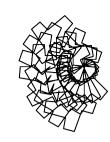
- **1. Filter approach:** Here the pre-processing is performed before processing with the model induction. Usually, some kind of statistical, logical or information theoretic criterion is used as the basis of pre-processing.
- **2. Wrapper approach:** The executions of pre-processing and model induction are interleaved.
 - Each individual of the population encodes a fixed-length vector of evolved feature definitions.
 - Each feature definition is an expression-tree composed of various arithmetic and logic operators, numerical constants, and the values of the original features.
 - During evolution, each individual undergoes standard search operations.
 - The values of evolved features are computed for all training cases a transformed ML dataset is obtained.
 - Cross-validation is carried-out using an inductive ML algorithm (i.e. Decision tree) that is trained on the transformed features.
 - The evaluation reflects the utility of the new transformation.

GP-based Feature Construction



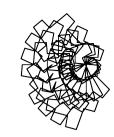


Classifier induction with GP

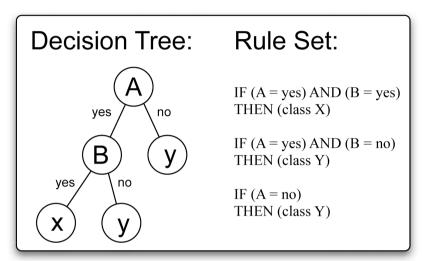


- 1. Discrete-valued classifiers
- 2. Real-valued classifiers

Discrete-valued classifiers

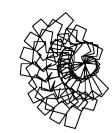


Decision trees are formed by a conjunction of constraints on the values of features.

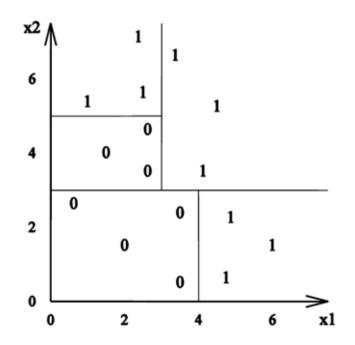


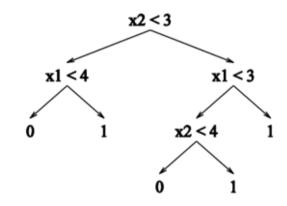
- Types of DTs:
 - 1. Univariate (a.k.a. axis-parallel) decision trees: test a single variable at each predicate.
 - 2. Linear multivariate (a.k.a. oblique) decision trees: a linear combination of features is tested at each predicate.
- Inherent ability to represent both 2-class and n-class classification models.
- Fitness function: classification accuracy (CA), i.e. given L training examples, CA = CorrectClassifications / L

Evolving univariate decision trees

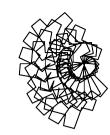


- We need a strongly-typed (tree-root type: int) system or a grammar.
- Function set:
 - 1. If-then-else. arg types: (boolean, int, int). return type: boolean
 - 2. logic operators <, >, =. arg types: (double, double). return type: boolean
- Terminal set:
 - 1. classification output (type int)
 - 2. features (type double)
 - 3. constants (type double)

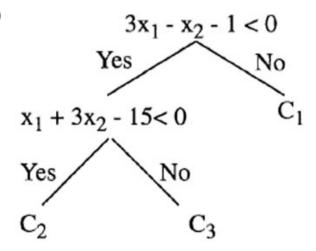


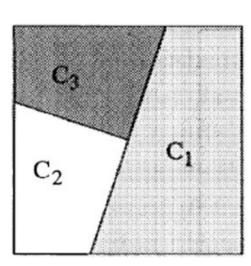


Evolving linear multivariate decision trees



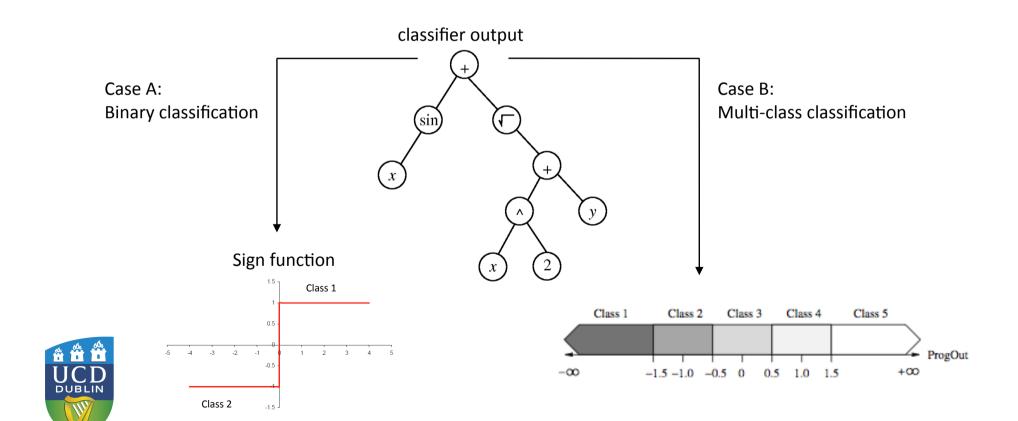
- We need a strongly-typed (tree-root type: int) system or a grammar.
- Function set:
 - 1. If-then-else. arg types: (boolean, int, int). return type: boolean
 - 2. logic operators <, >, =. arg types: (double, double). return type: boolean
 - **3.** arithmetic operators: +, -, *. arg types: (double, double). return type: double
- Terminal set:
 - 1. classification output (type int),
 - features (type double)
 - 3. constants (type double)





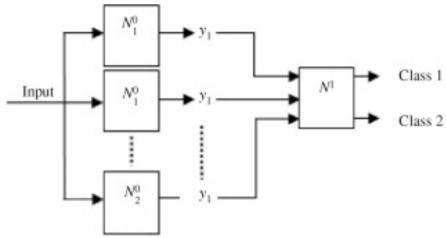
Real-valued classifiers

- Classifier is represented by a real-valued function.
- Function set: arithmetic operators (i.e. +, -, *, sin, etc.)
- Terminal set: features, constants
- Fitness function: classification accuracy



Constructing ensembles of real-valued classifiers

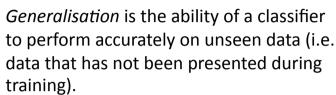
- The goal is to train a GP expression-tree to combine the predictions of several other learning algorithms.
 - 1. Several partitions of the original training data are formed and base classifiers are obtained from these datasets by means of different learning algorithms, i.e., ANNs, SVMs, RBFNs, etc.
 - 2. A GP expression-tree is evolved using the classifier-outputs as features.
 - 3. Function set: arithmetic operations, logic operations.
 - 4. Terminal set: classifier-outputs, constants



Classifier generalisation

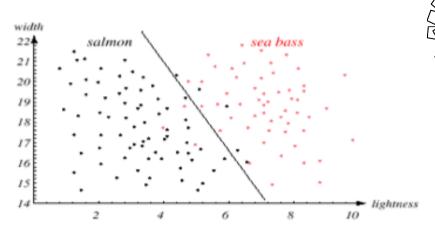


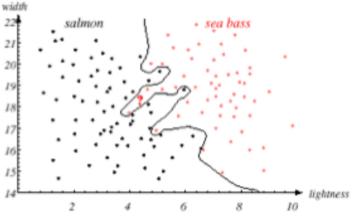
"I'm not superstitious either, but those were the three days Harris wore his lucky socks."

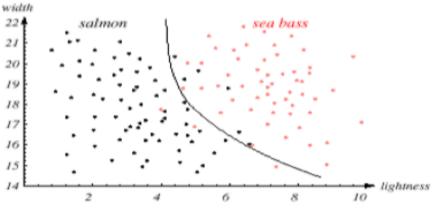


Model selection

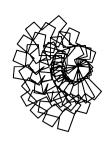
- Given data x_n=x₁, x₂,...,x_n
 and models M₁, M₂, M₃,...,M_k
 which model best explains the data?
- Need to take into account :
 - Goodness of fit
 - 2. Complexity of models
- Methods:
 - 1. Statistical hypothesis testing
 - 2. Bayesian Model Comparison
 - 3. Minimum Description Length principle
 - 4. Validation dataset







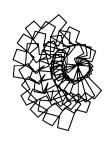
Use of a validation dataset for model selection



- Divide the data set into three sets:
 - The **training** set is used to fit the classifier.
 - The **validation** set is used for classifier selection.
 - The **test** set is used to assess the generalisation error of the chosen classifier.
 - Use proportions of 50%-25%-25%.

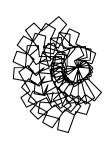
validation

Summary



- GP has successfully tackled a wide range of pattern classification tasks.
- Dominant program representations for evolving classifiers are decision-trees for approximating discrete-valued functions, and standard arithmetic-based expression tress for approximating real-valued functions.
- Fitness functions are generally based on classification accuracy.
- GP implicitly performs feature extraction/selection to optimise the discrimination capability of the classifier.
- Classifier generalisation is addressed via the use of a validation dataset.

Further reading



- Duda R., Hart P., Stork D., Pattern classification, John Wiley and Sons, Second edition, 2001.
- Sherrah J., Bogner R. Bouzerdoum B., *A survey on the application of Genetic Programming to classification*, IEEE Transactions of Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(2), pages 121-144, March 2010.
- Agapitos A., Dyson M, Lucas S., Sepulveda F., Learning to recognise mental activities: Genetic programming of stateful classifiers for brain-computer interfacing. In proceedings of GECCO 2008, Atlanta, USA.
- Theodoridis T., Agapitos A., Hu H., Lucas S., *A QA-TSK fuzzy model Vs evolutionary decision trees towards nonlinear action recognition*, In proceedings of IEEE International Conference on Information and Automation, June 20-23, 2010, Harbin, China.
- Jabeen H., Baig A., **Review of classification using genetic programming**, International journal of engineering science and technology, 2(2), pages 94-103, February 2010.
- Loveard T., Ciesie V., *Representing classification problems in genetic programming*, In proceedings of IEEE Congress on Evolutionary Computation, Vol. 2, pages 1070-1077, May 2001.
- Ludmila Kuncheva, Combining pattern classifiers: methods and algorithms, Wiley-Blackwell, 2004.

