Acknowledgments

The authors gratefully acknowledge support provided by NASA under Grant NGT-50224 and support pro-
vided by the National Science Foundation under Grant CTS-8451610. We also thank Hillol Kargupta for
donating his tournament selection implementation.

References

Booker, L. B. (1982). Intelligent behavior as an adaptation to the task environment (Doctoral disserta-
tion, Technical Report No. 243. Ann Arbor: University of Michigan, Logic of Computers Group).
Dissertations Abstracts International, 43(2), 469B. (University Microfilms No. 8214966)

Brindle, A. (1981). Genetic algorithms for function optimization. Unpublished doctoral dissertation, Uni-
versity of Alberta, Edmonton, Canada.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading, MA:
Addison—Wesley.

Knuth, D. E. (1981). The Art of Computer Programming (2nd, vol. 2 ed.). Reading, MA: Addison-Wesley.



e The chromosome length (int).

e Print the chromosome strings each generation (y/n)?

e The maximum number of generations for the run (int).
e The probability of crossover (float).

e The probability of mutation (float).

e Application-specific input, if any.

e The seed for the random number generator (float).

3.2 Chromosome Representation and Memory Utilization

SGA-C uses a machine level representation of bit strings to increase efficiency. This allows crossover and
mutation to be implemented as binary masking operations (see operators.c). Every chromosome (as well
as the population arrays and some auxiliary memory space) are allocated dynamically at run time. The
dynamic memory allocation scheme allocates a sufficient number of unsigned integers for each population
member to store bits for the user-specified chromosome length. Because of this feature, it is extremely
important that BITS_PER_BYTE be properly set (in sga.h and external.h) for your machine’s hardware and
C compiler.

4 Implementing Application Specific Routines

To implement a specific application, you should only have to change the file app.c. Section 2 describes the
routines in app.c in detail. If you use additional variables for your specific problem, the easiest method of
making them available to other program units is to declare them in sga.h and external.h. However, take
care that you do not redeclare existing variables.

Two example applications files are included in the SGA-C distribution. The file appl.c performs the
simple example problem included with the Pascal version; finding the maximum of #'°, where z is an integer
interpretation of a chromosome. A slightly more complex application is include in app2.c. This application
illustrates two features that have been added to SGA-C. The first of these is the ithruj2int function, which
converts bits i through j in a chromosome to an integer. The second new feature is the utility pointer
that is associated with each population member. The example application interprets each chromosome as a
set of concatenated integers in binary form. The lengths of these integer fields is determined by the user-
specified value of field_size, which is read in by the function app_data(). The field size must be less than
the smallest of the chromosome length and the length of an unsigned integer. An integer array for storing
the interpreted form of each chromosome is dynamically allocated and assigned to the chromosome’s utility
pointer in app-malloc(). The ithruj2int routine (see utility.c) is used to translate each chromosome
into its associated vector. The fitness for each chromosome is simply the sum of the squares of these integers.
This example application will function for any chromosome length.

5 Final Comments

SGA-C is intended to be a simple program for first-time GA experimentation. It is not intended to be
definitive in terms of its efficiency or the grace of its implementation. The authors are interested in the
comments, criticisms, and bug reports from SGA-C users, so that the code can be refined for easier use in
subsequent versions. Please email your comments to rob@comec4.mh.ua.edu, or write to TCGA:

The Clearinghouse for Genetic Algorithms
The University of Alabama
Department of Engineering Mechanics
P.O. Box 870278
Tuscaloosa, Alabama 35487



For modularity, each selection method is made available as a compile time option. Edit Makefile to
choose a selection method. Each of the three selection files contains the routines select_memory and
select _free (called by initmalloc and freeall, respectively), which perform any necessary auxil-
iary memory handling, and the routines preselect() and select(), which implement the particular
selection method.

stats.c contains the routine statistics(), which calculates populations statistics for each generation.

utility.c contains various utility routines. Of particular interest is the routine ithruj2int(), which
returns bits ¢ through j of a chromosome interpreted as an int.

app.c contains application dependent routines. Unless you need to change the basic operation of the GA
itself, you should only have to alter this file Further instructions for altering the SGA application are
included in section 4.

application() should contain any application-specific computations needed before each GA cycle. It
is called by main().

app-data() should ask for and read in any application-specific information. This routine is called by
init_data().

app-malloc() should perform any application-specific calls to malloc() to dynamically allocate mem-
ory. This routine is called by initmalloc().

app-free() should perform any application-specific calls to free(), for release of dynamically allo-
cated memory. This routine is called by freeall().

app-init () should perform any application-specific initialization needed. It is called by initialize().

app-initreport () should print out an application-specific initial report before the start of generation
cycles. This routine is called by initialize().

app-report() should print out any application-specific output after each GA cycle. It is called by
report ().

app-stats() should perform any application-specific statistical calculations. It is called by statistics().

objfunc(critter) The objective function for the specific application. The variable critter is a
pointer to an individual (a GA population member), to which this routine must assign a fitness.
This routine is called by generation().

Makefile 1s a UNIX makefile for SGA-C.

3 New Features of SGA-C

SGA-C has several features that differ from those of the Pascal version. One is the ability to name the input
and output files on the command line, i.e. sga my.input my.output. If either of these files is not named
on the command line, SGA-C assumes stdin and stdout, respectively. Another new feature of SGA-C is
its method of representing chromosomes in memory. SGA-C stores its chromosomes in bit strings at the
machine level. Input-output and chromosome storage in SGA-C are discussed in the following sections.

3.1 Input-Output

SGA-C allows for multiple GA runs. When the program is executed, the user is first prompted for the
number of GA runs to be performed. After this, the quantity of input needed depends on the selection
routine chosen at compile-time, and any application-specific information required. When compiled with
roulette wheel selection, the input requested from the user is as follows:

e The number of GA runs to be performed (int).

e The population size (int).



initialize() is the central initialization routine called by main().
initdata() is a routine to prompt the user for SGA parameters.

initpop() is a routine that generates a random population. Currently, SGA-C includes no facility for
using seeded populations.

initreport() is a routine that prints a report after initialization and before the first GA cycle.
memory.c contains routines for dynamic memory management.
initmalloc() is aroutine that dynamically allocates space for the GA population and other necessary
data structures.
freeall() frees all memory allocated by initmalloc().

nomemory() prints out a warning statement when a call to malloc() fails.
operators.c contains the routines for genetic operators.

crossover() performs single-point crossover on two mates, producing two children.
mutation() performs a point mutation.
random.c contains random number utility programs, including:
randomperc() returns a single, uniformly-distributed, real, pseudo-random number between 0 and 1.
This routine uses the subtractive method specified by Knuth (1981).
rnd(low,high) returns an uniformly-distributed integer between low and high.
rndreal (low,high) returns an uniformly-distributed floating point number between low and high.
flip(p) flips a biased coin, returning 1 with probability p, and 0 with probability 1-p.
advance random() generates a new batch of 55 random numbers.
randomize() asks the user for a random number seed.
warmup_random() primes the random number generator.

noise(mu, sigma) generates a normal random variable with mean mu and standard deviation sigma.
This routine is not currently used in SGA-C, and is only included as a general utility.

randomnormaldeviate() is a utility routine used by noise. It computes a standard normal random
variable.

initrandomnormaldeviate() initialization routine for randomnormaldeviate().
report.c contains routines used to print a report from each cycle of SGA-C’s operation.

report() controls overall reporting.
writepop() writes out the population at every generation.
writechrom() writes out the chromosome as a string of ones and zeroes. In the current implementa-
tion, the most significant bit is the rightmost bit.
Three selection routines are included with the SGA-C distribution:

rselect.c contains routines for roulette-wheel selection.
srselect.c contains the routines for stochastic-remainder selection (Booker, 1982).

tselect.c contains the routines for tournament selection (Brindle, 1981). Tournaments of any size

up to the population size can be held with this implementation?.

2The tournament selection routine included with the distribution was written by Hillol Kargupta, of the University of

Alabama.



SGA-C: A C-language Implementation of a
Simple Genetic Algorithm

Robert E. Smith David E. Goldberg
The University of Alabama The University of Illinois
Department of Engineering Mechanics Department of General Engineering
Tuscaloosa, Alabama 35405 Urbana, Illinois 61801

Jeff A. Earickson
Alabama Supercomputer Network

The Boeing Company
Huntsville, Alabama 35806

March 2, 1994

1 Introduction

SGA-C! is a C-language translation and extension of the original Pascal SGA code presented by Goldberg
(1989). It has some additional features, but its operation is essentially the same as that of the original, Pascal
version. This report is included as a concise introduction to the SGA-C distribution. It is presented with
the assumptions that the reader has a general understanding of Goldberg’s original Pascal SGA code, and
a good working knowledge of the C programming language. The report begins with an outline of the files
included in the SGA-C distribution, and the routines they contain. The outline is followed by a discussion
of significant features of SGA-C that differ from those of the Pascal version. The report concludes with a
discussion of routines that must be altered to implement one’s own application in SGA-C.

2 Files Distributed with SGA-C

The following is an outline of the files distributed with SGA-C, the routines contained in those files, and the
include structure of the SGA-C distribution.

sga.h contains declarations of global variables and structures for SGA-C. This file is included by main().
Both sga.h and external.h have two defines set at the top of the files; LINELENGTH, which determines
the column width of printed output, and BITS PER_BYTE, which specifies the number of bits per byte
on the machine hardware. LINELENGTH can be set to any desired positive value, but BITS_ PER_BYTE
must be set to the correct value for your hardware.

external.h contains external declarations for inclusion in all source code files except main(). The extern
declarations in external.h should match the declarations in sga.h.

main.c contains the main SGA program loop, main().
generate.c contains generation(), a routine which generates and evaluates a new GA population.

initial.c contains routines that are called at the beginning of a GA run.

1 Disclaimer: SGA-C is distributed under the terms described in the file NOWARRANTY. These terms are taken from the GNU
General Public License. This means that SGA-C has no warranty implied or given, and that the authors assume no liability
for damage resulting from its use or misuse.



SGA-C: A C-language Implementation
of a Simple Genetic Algorithm
by

Robert E. Smith
The University of Alabama

David E. Goldberg
The University of Illinois
and
Jeff A. Earickson

Alabama Supercomputer Network

TCGA Report No. 91002
March 2, 1994

The Clearinghouse for Genetic Algorithms
The University of Alabama
Department of Engineering Mechanics

Tuscaloosa, AL 35487



