

Dr. Miguel Nicolau

Artificial Intelligence in Games Using Evolutionary Techniques

COMP30290 Natural Computing COMP41190 Natural Computing and Applications

Outline

Evolutionary Algorithms and Games

What are EAs?

- Population-based algorithms;
- Darwinian theory of evolution: survival of the fittest;
- Stochastic;
- Genetic operators drive evolution:
 - Selection;
 - Recombination;
 - Mutation;
 - Replacement.
- > Three main decisions: algorithm, representation, evaluation.

Evolutionary Algorithms and Games

Why games?

- Billion-euro industry;
- Public exposure;
- Excellent research testbeds (path planning, move optimisation, dynamic responsiveness);
- Challenging (human-like behaviour, repetitiveness, opponent level).

Why EAs?

- Powerful search algorithms (human competitive);
- Often find non-obvious solutions;
- Adaptability and usability.

http://ncra.ucd.ie

Move Optimisation with Toribash

Game Description

- Avatar fight game, turn-based;
- At each turn, player controls joint angles of avatar;
- Objective: defeat opponent.

Move Optimisation with Toribash

Facts

- Ragdoll physics;
- Freeware;
- Active online community.

Why Toribash?

- Create adaptive behaviour;
- Reactive planning to opponent's actions;
- No predefined moves;
- Non-deterministic outcome.

Move Optimisation with Toribash

Algorithm

Genetic Algorithm.

Representation

• Each individual encodes choice for 22 joints, for each move:

- Contract, extend, hold or relax;
- 4.4 trillion possible combinations per move.

Evaluation

- Evolve avatar against static opponent (1 or 3 moves);
- Fitness = Tori score Uke score;
- Disqualification gets fitness 0.

Move Optimisation with Toribash

Demo videos

Path Planning with Ms. Pac-man

Game Description

- Puzzle game, human vs. computer;
- Navigate tunnels, eat pills, avoid ghosts (power pills: eat ghosts!);
- Objective: eat all pills in each level.

Path Planning with Ms. Pac-man

Facts

- One of the most popular video games of all times;
- Originally introduced in early 1980s;
- 255 levels of increasing difficulty.

Why Ms. Pac-man?

- Path planning in a dynamic environment;
- Non-deterministic behaviour for ghosts;
- Human players still far better;
- Used as benchmark in AI competitions.

Path Planning with Ms. Pac-man

Algorithm

Grammatical Evolution.

Representation

- Individual encodes choices of productions in a grammar:
 - Grammar provides syntactically correct solution;
 - Sequence of *if condition then action* rules with high-level functions;
 - if (inedibleGhostDistance > safeDistance) then goto(nearestPill).

Evaluation

- ► Face evolved controller against random or legacy team;
- Use available emulator;
- Fitness = game score (pills + bonuses).

Path Planning with Ms. Pac-man

Demo videos

Reactive Behaviour with Super Mario Bros

Game Description

- Platform game, human vs. computer;
- Navigate through obstacles and enemies;
- Objective: reach end of each level, collect extra bonuses.

Reactive Behaviour with Super Mario Bros

Facts

- Best-selling video game series of all times;
- Originally introduced in 1983;
- Hundreds of levels in mushroom world.

Why Super Mario Bros?

- Challenging mix of path planning vs. reactive behaviour;
- Popular benchmark in AI competitions;
- Compare different AI approaches.

Reactive Behaviour with Super Mario Bros

Algorithm

Grammatical Evolution.

Representation

- Individual encodes choices of productions in a grammar:
 - Grammar encodes behaviour trees;
 - High-level conditions: EnemyAhead, GapBehind;
 - High and low level actions: UseRightGap, jump, shoot.

Evaluation

- Train controller on series of random maps;
- Validate on unseen maps (adaptability);
- ► Fitness = game score (distance + bonuses).

Reactive Behaviour with Super Mario Bros

Demo videos

Observations

EAs and Games

- Adaptability of evolutionary techniques;
- High-level behaviours easier to understand and modify.

Awards

Mario entry finished 4th in CIG-2010 international competition.

Possible extensions

- Toribash: face against reactive opponent;
- Ms. Pacman: add more refined behaviours;
- Mario: combine path planning (hard AI) with reactive behaviours.

Next Classes

- Discussion group (Thursday);
 - Example conference paper with Mike.
 - Project feedback after lectures.