
Evolving Race Car Drivers using Grammatical Evolution

Martin Hansen-Schwartz

School of Computer Science & Informatics

University College Dublin

Abstract

This paper will be looking at evolving a race car driver using Grammatical Evolution for the program Robot
Auto Racing Simulation (RARS), a car simulation program where programmers can compete against each

other by creating their own intelligent driver. The evolved driver will be based on an already existing
programmed driver. The goal will be to optimize the existing driver’s average speed based on 5 chosen

complex tracks using Grammatical Evolution and thereby make its average speed better than it originally
was. A comparison between the original driver and the evolved optimized driver shows that the evolved

driver did not get to optimize the original driver due to time limitations.

1. Introduction

The aim of the introduction is to give a brief description of the program Robot Auto Racing Simulation

(RARS) [1] and Grammatical Evolution (GE) [2][3].

1.1 RARS

RARS is an open source car simulation program. It uses a realistic physics model, which makes driving

and steering more challenging. Each car is controlled using a drive function that is specified in each

driver’s .cpp file. The drive function takes situation “s” as an input and returns the car’s new tyre speed

and new drift angle (the angle between the car’s pointing vector and its velocity vector). This is

visualized in figure 1. The situation “s” has several attributes, for example, how far the car currently is

from the left and right wall of the track, how fast the car is travelling and if the car is on a straight

segment of the track or a right/left turn, to name a few. The car races can be displayed in 2D or 3D or

the program can be run at the command line, which will return the average speed of the car. At the

moment RARS works under Linux, Windows and DOS but there is no-one developing it any further as

there are other car simulators that people are working on mentioned further down.

Fig. 1: Visualizing the input and output for the robot driver

1.1.1 RARS Variables

RARS has a lot of different variables that will tell different things about the situation that your car is in

at any given moment during a race. You need to use these program variables to control your driver.

Figure 2 gives an overview of some of the most important variables to use.

Fig. 2: Illustration of what the different RARS variables mean

Figure 2 gives you an idea of what kind of information you will need to know about when you are

programming your driver. As you see from Figure 2, left turns have positive radii and right turns have

negative radii. This enables you to easily distinguish between left and right turns. Straight roads have

radius equal to 0. To give an example, if s.cur_rad=0 this means the car is currently on a straight road

and if s.cur_rad<0 the car is in a right turn and s.cur_rad>0 the car is in a left turn. Table 1 gives a brief

description of the most essential RARS variables you need to know.

Table. 1: Brief descriptions of the most essential RARS variables [4]

Variable name Description

cur_rad If the car is in a curve to the left, then this is the radius of the left, or inner edge of

the track. If the car is in a curve to the right, then this is the negative of the radius of

the right, or inner edge of the track. If on a straight road it is zero

to_end This tells you (i.e., the robot driver) how far you have to go to reach the end of the

straight or curve you are on. For a straight it is in fee and for a curve, which is a

circle arc, it is in radians. You use this to decide when to begin a transition to the

next segment, either by braking or accelerating, or by steering in an appropriate

way.

to_lft, to_rgt These tell you how close you are to the left and right walls of the track. If they get

too small you need to steer away from the wall. In a curve, you generally want to

keep near the inside wall for at least part of the curve. You do this by steering so as

to maintain a small value for one of those. Finally, if either of those becomes

negative, then you are off the track and accumulating damage and decelerating in

speed. (These are in feet.)

v How fast you are travelling in feet per second. Every part of the course has an

appropriate speed. You need to estimate the speed required and compare your speed

to it, then speed up or slow down.

vn The component of v which is perpendicular to the track walls. This tells you if you

are drifting towards a wall and if so, how quickly. You need to keep this from

getting very large or very negative or you will go off the track soon afterward.

Negative means heading toward right wall.

nex_rad The radius of the next segment, zero for a straight, negative for a right turn. It is

necessary to make some kind of transition as you near the end of the current

segment. nex_rad lets you calculate if you need to slow down or speed up, and how

much and in which direction you will have to begin heading.

1.2 Grammatical Evolution

Grammatical Evolution is a variant of Genetic Programming (GP) [5]. It builds on the same idea as GP

as its objective is to find an executable program or program fragment using a given object function to

find the program with the best fitness value. The components of GE consist of a grammar, an objective

function and a search engine, which GE uses to produce an executable program or program fragment as

mentioned previously. GE can evolve computer programs in any desired programming language. In GP

(Koza-style GP [5]) any function can be a child of any other function but in GE this can be restricted as

it uses a user-defined grammar (usually Backus-Naur Form), which can restrict what function calls

another. The way this is done is to transcribe the binary strings (genotype) into integer strings, which

are then translated into rules defined in the grammar. The rules are then mapped into programs and are

each assigned a fitness value (phenotype) using the objective function. A search-engine could be

implemented with a genetic algorithm. It could also be implemented in GE with particle swarm

optimization [6] used to generate and evolve a population of binary strings. These strings will then be

mapped into a program that will be evaluated to find their fitness using a defined objective function.

GE uses Bit Mutation, 1-point crossover and Codon Duplication as its genetic operators. Please see

Figure 3 to find an overview of the mapping process of GE and an overview of the GE components.

Fig. 3: An overview of the mapping process of GE (left) and the GE components (right) [7]

1.3 Other car simulators

There are also other car simulators apart from RARS. The Open Racing Car Simulator (TORCS) [8] is

another popular car simulator which is directly inspired by RARS. TORCS can only be run in 3D,

which is why RARS was chosen instead as RARS can be run at the command line. This means the

fitness evaluation would be faster than running the graphics.

2. Experiments

The experiments were conducted using libGE [7] coupled with Evolved Objects (EO) [9]. Each

experiment run was repeated 20 times. Each population consisted of 70 individuals and was evolved

for 10 generations. The probability of crossover was 90% and the probability of bit-flip mutation was

1%. The random number generator used was the Mersenne Twister (eoRNG.h). The fitness for each

individual was the average of the individual’s average speed on five different tracks.

2.1 Test Tracks

The tracks that were used in the experiments were barcelon.trk, buenos.trk, elev2.trk, montreal.trk and

spa.trk. Please look at Figure 4-8 to see how the different tracks look. The reason why these specific

tracks were chosen was to try to get some complex combinations of different turns included in the

fitness evaluation.

Fig. 4: barcelon.trk Fig. 5: buenos.trk

Fig. 6: elev2.trk Fig. 7: montreal.trk

Fig. 8: spa.trk

2.2 Grammar

The grammar was based on how the robot driver Tuto3 (tutorial3.cpp, comes with the latest version of

RARS) acted. Please see the grammar below in Figure 9. Some parts have been left out as it would

otherwise fill up too much space. Basically there are three cases for the car. Either the car is on a

straight road or else it is on a left or right turn. The grammar will decide what the alpha and vc should

be. The variable “lane” will tell the car how far from the track wall it should aim to be. It has been left

up to the Grammatical Evolution to find out what the constants should be. The different rules will be

explained further down.

<start> ::= (setting up constants, left out)

if(s.cur_rad \> 0.0)\n\

 {\n\

 (determining “lane”, “alpha” and “vc”, left out)

 }\n\

 else if(s.cur_rad \< 0.0)\n\

 {\n\

 (determining “lane”, “alpha” and “vc”, left out)

 }\n\

 else if(s.cur_rad == 0.0)\n\

 {\n\

 (determining “lane”, “alpha” and “vc”, left out)

 }\n

<line> ::= <ifStat> | <vc> | <line> <line> |

<ifStat> ::= if(<ifCond>)\n {\n <line> }\n else\n {\n <line> }\n

 | if(<ifCond>)\n {\n <line> }\n

<ifCond> ::= <ifExpr> <logicOp> <ifExpr>

<logicOp> ::= \< | \> | ==

<alpha> ::= alpha = STEER_GAIN * (s.to_lft - lane)/width - DAMP_GAIN * s.vn/s.v +

bias;\n

<vc> ::= vc = s.v <op> <expr>;\n

<expr> ::= <expr> <op> <val> | (<expr>) | <num>

<op> ::= + | - | * | /

<num> ::= 0.0 | 0.1 | 0.25 | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 10.0 | 20.0

<ifExpr> ::= <ifExpr> <op> <ifVal> | (<ifExpr>) | <ifVal>

<ifVal> ::= <num> | <ifOp>

<ifOp> ::= s.cur_rad | s.v | s.nex_rad | s.to_end

 | CritDist(s.v, speed_next, BRK_CRV_ACC)

 | CritDist(s.v, speed_next, <expr>) | s.nex_len

Fig. 9: The grammar used for the experiments, some part have been left out

The reason why the grammar was based on a specific driver was that the search space would be too big

and it would take too long to find a driver with reasonable behavior. The reason why the Tuto3 driver

was chosen was because its code was easy to understand, it had a good performance and the tutorials

about how to create robot drivers for RARS included the Tuto3 driver in its examples. The grammar

does not consider opponent drivers on the track, so the resulting driver will not know what to do when

approaching other drivers. The decision not to consider opponent drivers was made because the

command line version of RARS would only test a driver on a given track with no other drivers

included. Multiple drivers could have been implemented in the RARS command line version but there

was not enough time to do this. Figure 10 gives an example of an evolved driver using the grammar

from Figure 9. The example has been edited slightly so it does not take up too much space in this

paper.

static double LEFT_MARGIN = 20.0 - 3.0;

static double RIGHT_MARGIN = width - LEFT_MARGIN;

static double DELTA_MARGIN = 0.25 - 0.33 / 0.8 - 0.1;

static double START_LEFT_CORNER = RIGHT_MARGIN -(2.0);

static double START_RIGHT_CORNER = width - START_LEFT_CORNER;

static double END_LEFT_CORNER = START_RIGHT_CORNER;

static double END_RIGHT_CORNER = START_LEFT_CORNER;

static double CORNER_SLOPE = 0.7;

static double STRAIGHT_SLOPE = 0.33;

static double BIG_SLIP = 2.0;

static double BRK_CRV_ACC = -(0.25);

static double BRK_CRV_SLIP = 1.0 + 0.2;

static double BRAKE_ACCEL = -(0.1);

static double CORN_MYU = 0.25 - 0.33 / 0.8 - 0.1 / 2.0;

static double TOO_FAST = 0.7;

static double BRAKE_SLIP = 0.33;

static double CURVE_END = 2.0;

static double STEER_GAIN = 1.0 - 0.5;

static double DAMP_GAIN = 3.0 - 1.0;

if(s.cur_rad> 0.0)

{

 was_left = true;

 was_right = false;

 if(s.to_end< (temp_lane - END_LEFT_CORNER)/CORNER_SLOPE) {

 lane = transition_lane(END_LEFT_CORNER, CORNER_SLOPE, s.to_end);}

 if(s.nex_rad< 0.0)

 { speed_next = corn_spd(fabs(s.nex_rad) + (width-START_RIGHT_CORNER), CORN_MYU); }

 else if(s.nex_rad == 0.0)

 { speed_next = 250.0; }

 speed = corn_spd(fabs(s.cur_rad) + s.to_lft, CORN_MYU);

 bias = (s.v*s.v/(speed*speed)) * atan(BIG_SLIP / speed);

 alpha = STEER_GAIN * (s.to_lft - lane)/width - DAMP_GAIN * s.vn/s.v + bias;

 to_end = s.to_end * (s.cur_rad + s.to_lft);

 if(to_end <= CritDist(s.v, speed_next, BRK_CRV_ACC))

 { vc = s.v - BRK_CRV_SLIP; }

 else if(to_end/width< CURVE_END && speed_next> speed)

 { vc = 0.5 * (s.v + speed_next)/cos(alpha); }

 else

 { vc = 0.5 * (s.v + speed)/cos(alpha); } }

else if(s.cur_rad< 0.0)

{

 was_left = false;

 was_right = true;

 if(s.to_end< (temp_lane - END_RIGHT_CORNER)/CORNER_SLOPE)

 { lane = transition_lane(END_RIGHT_CORNER, CORNER_SLOPE, s.to_end); }

 if(s.nex_rad> 0.0)

 { speed_next = corn_spd(fabs(s.nex_rad) + (width-START_LEFT_CORNER), CORN_MYU); }

 else if(s.nex_rad == 0.0)

 { speed_next = 250.0; }

 speed = corn_spd(fabs(s.cur_rad) + s.to_rgt, CORN_MYU);

 bias = -((s.v*s.v/(speed*speed)) * atan(BIG_SLIP / speed));

 alpha = STEER_GAIN * (s.to_lft - lane)/width - DAMP_GAIN * s.vn/s.v + bias;

 to_end = s.to_end * (fabs(s.cur_rad) + s.to_rgt);

 if(to_end <= CritDist(s.v, speed_next, BRK_CRV_ACC))

 { vc = s.v - BRK_CRV_SLIP; }

 else if(to_end/width< CURVE_END && speed_next> speed)

 { vc = 0.5 * (s.v + speed_next)/cos(alpha); }

 else

 { vc = 0.5 * (s.v + speed)/cos(alpha); }

 vc = s.v / 0.33;

}

else if(s.cur_rad == 0.0)

{

 if(was_left)

 { was_left = false;

 was_right = false;

 lane = LEFT_MARGIN;

 temp_lane = lane; }

 else if(was_right)

 { was_left = false;

 was_right = false;

 lane = RIGHT_MARGIN;

 temp_lane = lane; }

 if(s.nex_rad> 0.0)

 {

 if(s.to_end< (temp_lane - START_LEFT_CORNER)/STRAIGHT_SLOPE)

 { lane = transition_lane(START_LEFT_CORNER, STRAIGHT_SLOPE, s.to_end); }

 speed = corn_spd(fabs(s.nex_rad) + (width-START_LEFT_CORNER), CORN_MYU); }

 else if(s.nex_rad< 0.0)

 {

 if(s.to_end< (temp_lane - START_RIGHT_CORNER)/STRAIGHT_SLOPE)

 { lane = transition_lane(START_RIGHT_CORNER, STRAIGHT_SLOPE, s.to_end); }

 speed = corn_spd(fabs(s.nex_rad) + (width-START_RIGHT_CORNER), CORN_MYU);

 }

 else { speed = 250.0;}

 bias = 0.0;

 alpha = STEER_GAIN * (s.to_lft - lane)/width - DAMP_GAIN * s.vn/s.v + bias;

 if(s.to_end> CritDist(s.v, speed, BRAKE_ACCEL)) {vc = s.v + 50.0;}

 else {if(s.v> TOO_FAST * speed) {vc = s.v - BRAKE_SLIP;}

 else if(s.v< speed/TOO_FAST) {vc = (2.0) * speed;}

 else {vc = (0.25) * (s.v + speed);}}

 if(0.2 == (0.8)) {vc = s.v / 0.33;}

}

Fig. 10: Example of an evolved driver using the grammar from Fig. 9

2.2.1 Genotype-Phenotype mapping example

Figure 11 gives an example of how the genotype-phenotype mapping works in GE. The example uses

the <expr> rule in the grammar to demonstrate the mapping process.

<expr> ::= <expr> <op> <val> 0 11101010 10010000 11000010

 | (<expr>) 1

 | <num> 2

 234 144 194

<op> ::= + 0 <expr>

 | - 1 234%3=0

 | * 2 <expr> <op> <val>

 | / 3 144%3=0

 <expr> <op> <val> <op> <val>

 194%3=0

<num> ::= 0.1 0 <num> <op> <val> <op> <val>

 | 0.25 1 234%3=0

 | 0.5 2 2.0 <op> <val> <op> <val>

 | 1.0 3 144%4=0

 | 2.0 4 2.0 + <val> <op> <val>

 | 3.0 5 194%10=4

 | 4.0 6 2.0 + 2.0 <op> <val>

 | 5.0 7 234%4=2

 | 10.0 8 2.0 + 2.0 * <val>

 | 20.0 9 144%10=4

 2.0 + 2.0 * 2.0

Fig. 11: The genotype-phenotype mapping process using the <expr> rule as an example. Notice

the wrapping events happening when the end of binary string has been reached and mapping is

not finished.

3. Results

The results did not turn out as we hoped. We will have a closer look at the results of the experiments

and try to analyse them.

3.1 The average fitness at each generation

The average fitness (the average of the “average speed” of the 5 chosen tracks) at each generation is

shown in Figure 12. The graph shows the overall average obtained from the average speed of 20 runs

over 10 generations. The graph also shows the average speed of the Tuto3 driver. The results did not

turn out as expected as the graph shows the average of average speed of the evolved driver does not

even reach the average speed of the Tuto3 driver.

The average of "Average Speed" of 20 runs

over 10 generations

0.0000

20.0000

40.0000

60.0000

80.0000

1 2 3 4 5 6 7 8 9 10

Num ber of Generations

A
v

e
ra

g
e

 S
p

e
e

d

(m
p

h
) Evolved Driver

Tuto3 Driver

Fig. 12: The evolved driver’s average fitness at each generation or “ the average of the Average

Speed” compared to the Tuto3 driver average speed. The average is taken from the fitness from

each of the 5 tracks.

The graph in Figure 11 shows progress from generation 1 to generation 10 but the graph just seems to

flatten out before it reaches its target. It looks like the population needed more diversity to find a better

solution.

3.2 Best solution found

The best solution is almost as good as that achieved by the Tuto3 driver but not better than it as was

expected. Many of the other best solutions from each run were also close to the Tuto3 driver’s average

speed. From looking at the graph in Figure 11, the best solutions of the experiments appear to be

further from the Tuto3 driver’s average speed than they actually are. Figure 13 shows the best solution

found at each run of the experiments which give a better idea of how close the evolved driver got to the

original driver. The overall best solution was found in the 11th run and had an average speed of

69.72mph compared to the Tuto3 driver’s average speed of 69.8762mph. The best solution of each run

ranges between about 62 – 69mph.

Best solution found at each run

58

60

62

64

66

68

70

72

1 3 5 7 9 11 13 15 17 19

Number of runs

A
v

e
ra

g
e

 s
p

e
e

d
 (

m
p

h
)

Evolved Driver

Tuto3 Driver

Fig. 13: The best solution found at each run of the experiments. The evolved driver almost

reached the original driver’s average speed but never outperformed it.

4. Future Work

As this project has been quite limited by time constraints, there are lots of other possibilities that could

develop this project further.

4.1 Consider other drivers on the track

It could be interesting to see how the evolved driver would perform if you introduced opponent drivers

during the fitness evaluation. This could easily be achieved by modifying the code for the command

line version of RARS.

4.2 New Grammar

The grammar used for the experiments was mainly based on the Tuto3 driver. Modifying the grammar

in the right way would probably give better results. Maybe adding some new features to the grammar,

based on new ideas on how the car could react during the race, would give even better results. It could

also be that there should be more predefined operations to make the search space smaller, but this is

just a suggestion and it might not help.

4.3 Change probability of Mutation

During some of the runs the best solution of each run was already found in between 1st and the 3rd

generation. This might suggest that the search needs to increase the probability of the mutation to keep

the diversity in the population to avoid premature convergence.

4.3 More generations

You could try to increase the maximum number of generations and see if that would find a better

solution for each generation. The experiments for this project were limited to a maximum of 10

generations as each run is very time consuming.

4.4 Larger populations

Increasing the size of the population might help find better solutions quicker. The size of the

population was another limiting factor as this also increased the amount of time it would take for each

run.

4.5 Specific strategies for the driver

New specific strategies for the driver could also be applied. You could try to concentrate on specific

areas for example you could concentrate on the car’s speed when it is turning or specific steering

strategies. New strategies could also involve specific behaviour in specific situations during a race for

example should the car drive more erratically at the end of a race to try to achieve a better position?

4.6 Test GE performance on individual tracks

The experiments undertaken in this project were based on the average performance of 5 different

tracks. It could be interesting to see how well GE performs on the individual tracks on their own and

then compare them to each other and see if there is a specific kind of track that GE performs better on.

5. Conclusions

The results of the experiments did not turn out as expected. The goal was not reached as the best

solution out of all the runs was not as good as the Tuto3 driver. The reason for this might be because

there was not enough time to do the experiments. This would therefore suggest that to decrease the

time spent on each experiment run, the size of the population and the number generations had to be

limited. The results might have turned out better if there had been a possibility to increase these two

parameters. It could also be the case that the grammar should have been defined differently to give

better results or maybe the search space was too big to allow for a better performance as the population

size and the number of generations was limited to small numbers. As you can see in the future work

section, there are a lot of opportunities to build on this project.

References

[1] Kjær, C., Teise, E., Judd, G., Pascutto, G., Guery, M., Coulom, R., Foden, T.: 1995. RARS: Robot
Auto Racing Simulation, v. 0.91_2. SourceForge

[2] O’Neill, M., Ryan, C.: 2001. Grammatical Evolution. IEEE Transactions on Evolutionary
Computation

[3] O’Neill, M., Ryan, C.: 2003. Grammatical Evolution. Kluwer Academic Publishers

[4] Timin, M.: RARS Online Tutorial 6, http://rars.sourceforge.net/doc/tu_m6.htm

[5] Koza, J.R.: 1992. Genetic Programming: On the programming of computers by natural selection.
MIT Press, Cambridge, Mass

[6] Kennedy, J., Eberhart, R.: 1995. Particle swarm optimization. Proceedings of the IEEE
International Conference on Neural Networks, Piscataway, NJ

[7] Nicolau, M.: 2004. libGE User Manual, v. 0.26, BDS Group, University of Limerick

[8] Wymann, B., Espie, E.: 1999. TORCS: The Open Racing Car Simulator. SourceForge

[9] Schoenauer, M., Merelo, J. J., Keijzer, M.: 2000. EO: Evolving Objects, v. 0.9.3z. SourceForge

