
Inactive subpopulations improve adaptability and diversity

Dominik Herrmann
dominik at herrmann-net.de

School of Computer Science & Informatics
University College Dublin

Abstract. Real-world problems involve dealing with dynamic environments. Often, naïve imple-
mentations of genetic algorithms fail here, because the optimum solution is a moving target. This
paper proposes an extension to the concept of the population in order to increase its adaptability.
Therefore, the population is segmented into subpopulations, whereas only one of them is actively
engaged at a given time. Various experiments demonstrate how to prevent undesired convergence
through exchanging individuals between subpopulations. It is shown that this macromutation can
improve flexibility, delay convergence and confer an adaptive advantage in a dynamic environment
if the right set of parameters is used.

1 Introduction

Genetic algorithms are supposed to find the optimum solution to a problem through evolutionary pressure
on a population of individuals representing the specific problem. The algorithm resembles evolution in
nature by employing crossover and mutation operators. This powerful concept was proposed by Holland
[3]. Since then, it has undergonemuch research in order to understand the inner workings of optimisation
of static and dynamic problems.

Optimisation problems in dynamic environments are a particularly difficult task - even for genetic
algorithms. In contrast to static problems the fitness function to optimise is changing throughout time.
Therefore, it is not sufficient to find the optimum solution only once. Instead, every change has to be
recognised, so that the solution can be adjusted to the new environment. A number of papers discuss how
to address this problem when a change has been detected, popular approaches are Hypermutation [1] and
Variable Local Search [7].

This paper will not discuss how to detect change but concentrate on the ability of a genetic algorithm
to track the optimum solution of a dynamic fitness function. Previous research mainly dealt with this
problem by embedding inactivity or redundancy into the algorithm [2]. Levenick has shown that introns,
i.e. inactive parts of the genome, are able to confer an adaptive advantage over regular individuals in
dynamic environments [6]. Another approach is to integrate redundancy on the level of the population.
This idea led to parallel genetic algorithms [5] and island models [4], which have a similar approach like
this paper.

Because the existing approaches are often very sophisticated, it can be difficult to understand the
underlying workings of the algorithm. Therefore, it is worthwhile to study the behaviour of genetic
algorithms in dynamic environments on a very basic level. This paper aims to evaluate whether it is
possible to improve the performance of a genetic algorithm by splitting its population into an active
and an inactive segment. Therefore, a number of experiments was performed in order to compare this
approach to a traditional algorithm. A classic genetic algorithm will be compared to a modified one,
which is able to exchange individuals between two subpopulations, in context of a simple dynamic fitness
function. It will be evaluated whether immigrants confer adaptive advantage and are able to increase
diversity.

A brief description of dynamic environments and inactive subpopulations is provided in section 2.
Section 3 describes the setup and the overall methodology for the experiments, whereas sections 4 and
5 elaborate on the results of extensive experiments on adaptive advantage and a short study of diversity.
Finally, section 6 presents some ideas for further research and summarise the findings in section 7.

2 Inactive subpopulations in dynamic environments

This section provides a brief description of the application of genetic algorithms in dynamic environ-
ments. Furthermore, it introduces the notion of inactive subpopulations. Finally, it states two hypotheses,
which will be verified with the help of three experiments (cf. sections 4 and 5).

2.1 Characteristics of dynamic environments

Dynamic environments can be classified by numerous parameters. For the purpose of this paper the
following are of relevance:

– continuous changes versus abrupt changes (in terms of time)
– small changes versus large-scale changes (in terms of the optimisation problem)
– recurrence or non-recurrence of change (repeated pattern or unique sequence)
– change rate, i.e. the absolute time interval between changes (number of generations)

Note that this paper only focuses on recurring changes with a constant rate of change.
The structure of genetic algorithms as presented in section 1 allows them to adapt to continuous small

changes. Large-scale changes of the fitness function during a run can pose a problem for them, though.

2.2 Success factors of genetic algorithms

Generic problems Holland identifies two driving characteristics of genetic algorithms, exploration and
exploitation. Exploration refers to the ability of an algorithm to exhaustively search for the optimum
solution in the entire fitness landscape in order to find the global optimum and not only a local one. Ex-
ploitation addresses its effectiveness in finding the actual optimum value once a nearby, almost optimum
solution has been found.

These two conflicting forces lead to the problem of premature convergence [9]. In this context con-
vergence indicates overall homogeneity across the population, i.e. that a large part of the population is
concentrated on one particular solution (trying to exploit it most effectively). At that stage of a run it is
usually impossible to divert the search to other parts of the fitness landscape (leading to poor exploration).

Dynamic environments Previous research suggests two important concepts for the performance of
a genetic algorithm in dynamic environments: adaptability [4] and diversity [6]. An algorithm has to
be able to detect and track changes of the fitness landscape and adapt its interior structure to the new
surroundings. This can be facilitated by maintaining some amount of diversity or redundancy.

When it comes to dynamic fitness functions premature convergence is particularly problematical.
Once a large amount of individuals has converged on the seemingly optimum solution it can have great
difficulty in the event of change. Therefore, preventing premature convergence is an especially important
target in this context.

2.3 Effectiveness of inactive subpopulations

For the purpose of this paper, a number of experiments was conducted, utilising a genetic algorithm with
two distinct populations. I will call the proper population the active one and the second population the
inactive one. This term refers to the fact that only the individuals in the active population are exposed
to selection pressure based on their current fitness value. The inactive subpopulation is allowed to breed
independently by always selecting random parents for the next generation.

In both populations the basic genetic operators mutation and crossover are applied during breeding.
The approach presented in this paper additionally employs a macromutation: After a certain number
of generations some amount of individuals is exchanged between subpopulations. Thus, new genetic
material is injected into the active subpopulation, which may be beneficial for solving the optimisation
problem. Note that the population size is not affected by the exchange as the migrated individuals replace
existing individuals in the population.

It has been shown [5] that inactive subpopulation can work as a memory or cache. Apart from that,
it might be an effective means to increase diversity in the active subpopulation and thus delay premature
convergence.

The exchange process is controlled by several parameters: The migration rate determines how fre-
quently individuals migrate. The extent of the influence of an exchange operation is addressed by the
migration amount (in % of the population size). Another means for tuning the exchange process is the
selection method applied to determine which individuals will be migrated (the best individuals or ran-
domly selected ones) and which get replaced by the migrants (the worst individuals or random ones).
Finally, the structure of the exchange process itself can be altered, e.g. migrating individuals only from
the inactive to the active population but not vice versa. The influence of the aforementioned parameters
will be evaluated by simple experiments.

2.4 Hypotheses

Hypothesis 1: In a dynamic environment, migrating individuals between active and inactive subpopula-
tions can confer adaptive advantage (cf. section 4).

In previous studies premature convergence was identified as one of the main obstacles when it comes to
flexibility and adaptability [6]. Therefore, it is important to test another hypothesis:

Hypothesis 2: In a dynamic environment, migrating individuals between active and inactive subpopula-
tions will delay convergence and retain diversity (cf. section 5).

3 Methodology

3.1 Parameters and setup

All experiments were run 30 times in order to get meaningful average results. The genetic algorithm
from the software library ECJ v151, which was slightly extended for the experiments, was used. Table 1
lists the basic parameters for the evolutionary process. Appropriate values were determined in a series of
preliminary experiments.

Table 1. Common genetic algorithm parameters for all experiments

Parameter Value
xover method and rate ECJ anypoint / 0.7
mutation rate 0.01
selection method tournament selection, size 2
random number generator ECJ MersenneTwister
seed of first run 4358
number of generations 1000
genome size 100 bits

3.2 Fitness function and metrics

The fitness function used in the experiments is an extension of the popularOne-Max fitness function.One-
Max calculates the fitness of an individual by just counting the bits set to 1. Thus, the ideal individual
has all of its bits set to 1. In the context of optimisation problems this can be interpreted as maximising
the amount of 1s in the bit string.

For the experiments a simple dynamic environment will be simulated by the so called Zero-One-Max
fitness function. It switches from One-Max (maximising 1s) to Zero-Max (maximising 0s) and vice versa
on a regular basis. The abruptness and the recurrence rate of the change can be adjusted to evaluate the
behaviour in different scenarios. For this paper two distinct scenarios were created, namely continuous
change and abrupt change.

In experiment 1 (cf. section 4.1) the dynamic fitness function exerts abrupt change by alternating
between the two extreme cases. The change interval is 100. As the experiments run for 1000 generations
there will be 9 changes in total. Between these changes the fitness function stays constant.

In experiment 2 (cf. section 4.2) there are more (49) smaller changes with shorter intervals between
the individual changes (changes occur every 20 generations) simulating continuous change. After a
change 20% of the genome of an ideal individual has to be modified in order to become ideal again.
The behaviour of the fitness functions is outlined in figure 1. The graph shows the required relative
amount of 1s for an ideal individual over time.

In experiments 1 and 2 the adaptability of the algorithms is evaluated using the following metrics:

IdealIndividualsFound refers to the effectiveness of an algorithm. It indicates how often at least one
ideal individual was found after one change but before the next change. The values are averaged over
all the runs. The optimum value of this metric for experiment 1 is 10, for experiment 2 it is 50.

1 http://cs.gmu.edu/~eclab/projects/ecj/

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

pr
op

or
tio

n
of

 1
s

in
 g

en
om

e
of

 id
ea

l in
di

vid
ua

l

generation

abruptly changing fitness function

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

pr
op

or
tio

n
of

 1
s

in
 g

en
om

e
of

 id
ea

l in
di

vid
ua

l

generation

continuously changing fitness function

Fig. 1. Dynamic fitness functions employed in experiment 1 and 2

FirstIdealIndividual is a measure of efficiency. It shows how fast an ideal individual was found after a
change of the fitness function. It is calculated as the absolute generation number of the first occur-
rence of an individual with relative fitness 1.0 modulo the change rate. Therefore, smaller values are
better whereas the worst value is the value of the change rate (when the ideal individual is found just
in the last generation before the next change is due).

Experiment 3 aims to measure the diversity in the populations by using the following metrics:

StandardDeviationOfFitness measures diversity expressed in the fitness of all individuals of a popu-
lation. Converged populations usually consist of individuals with the same fitness whereas diverse
populations offer a wide range of fitness values. Higher values of this metric indicate a more diverse
population. Care has to be taken interpreting this metric because individuals with a very unequal
genome can have the same fitness. Therefore, an additional genome-based metric is necessary.

GenomeVariability intends to measure the diversity in the genome of a population. This is achieved by
iterating over all individuals and separately calculating the statistical variance for each bit position.
The metric is the sum of those bitwise variances. Higher values indicate a more diverse population.

Where appropriate the results were supported by a statistical measure:

p-value is a statistical indicator of significance which is returned by the Student’s t-test. The p-value
gives the probability that the fact that two distributions have identical arithmetic means x is due to
pure coincidence. Usually, a level of significance of α = 0.05 is used as threshold. Therefore, if
the p-value is smaller than α the two samples are said to be significantly different in terms of their
arithmetic means

4 Evaluation of adaptive advantage

This section presents two experimentswhich compare the adaptability of a classic genetic algorithm (with
one uniform population) with a genetic algorithm utilising two populations (one active, one inactive).
The two experiments evaluate two migration strategies each, namely continuous migration and abrupt
migration.

In a preliminary experiment the classic algorithm was invoked on the dynamic fitness function with
different population sizes. This constitutes the base case. After that, the modified algorithm was invoked
on the problem. During the run the IdealIndividualsFound and FirstIdealIndividual were recorded. Ex-
changing individuals between populations would confer adaptive advantage if the modified algorithm
found the FirstIdealIndividual faster than the classic algorithm.

4.1 Experiment 1: abrupt changes

For this experiment the abrupt Zero-One-Max function with a change rate of 100 was applied (cf. section
3.2). All runs found the maximum of 10 ideal individuals per run. The results for the base case are shown
in table 2. It can be observed that the performance of the classic algorithm increases with population size,
which is not surprising.

Table 2. Base case: performance of classic genetic algorithm increases with population size

Population size 100 200 400 600 800 1000 2000
FirstIdealIndividual (average) 66.78 58.79 54.33 53.06 52.06 51.35 49.71

Continuous migration For comparison, the modified algorithm was run with a migration rate of 2 and
a migration amount of 3% of the population. Furthermore, the individuals to be sent from the inactive
population were chosen with tournament selection (selecting the most appropriate individuals under the
current circumstances, see section 6 for more discussion of this scheme) while the individuals sent from
the active populationwere determined randomly. Again, all ideal individuals were found, and the metric
FirstIndividualFound follows a similar trend: All values are consistently better (lower) for the same pop-
ulation size. Though, one should take into account that the modified algorithm has two populations with
a doubled total size. Therefore, the comparison has to be performed against a regular algorithm with a
population of twice the size. Table 3 shows the results of this benchmark.

Table 3. Benchmarking the modified algorithm for different population sizes

Total (active+inactive) population size 200 400 800 2000
FirstIdealIndividual regular algorithm 58.79 54.33 52.06 49.71
FirstIdealIndividual modified algorithm 63.42 55.65 51.35 48.52
p-value 0 1.58E-5 5.81E-3 8.90E-8
Algorithm with better performance regular regular modified modified

The results show that the act of exchanging individuals between the two subpopulations can lead to a
significant adaptive advantage for large population sizes when 3% of the population are exchanged every
2 generations. This result is noteworthy because it suggests that continuousmigration is able to cope with
abrupt changes.

For a more detailed analysis how the two parameters migration rate and migration amount influence
the performance, additional tests were carried out with a fixed population size of 800 (400 active, 400
inactive individuals respectively).

For a thorough analysis the value of the migration amount was varied between 0.5% and 20%, the
value of the migration rate between 1 and 8. The results of these runs are graphed in figure 2. Note that
the graph shows the relative performance in terms of FirstIdealIndividual, which means that a value of
+1% means that on average the modified algorithm found the first ideal individual 1% faster than the
classic algorithm.

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 20 10 3 1 0.5

re
la

tiv
e

pe
rfo

rm
an

ce
 to

 b
as

e
ca

se

migration amount [% of population size]

migration interval
1
2
4
8

Fig. 2. Relative performance (FirstIdealIndividual) of modified algorithm in relation to classic algorithm

As figure 2 indicates there is a number of scenarios (migration interval, migration amount), namely
(1, 0.5%), (1, 1%), (2, 0.5%), (2, 1%), (2, 3%), (4, 1%), (4, 3%), (8, 3%), (8, 10%), which allow the
modified algorithm to outperform the classic one. Further analysis has shown, that the difference of the
FirstIndividualFoundmetric is significant on a level of at least α= 0.05. Furthermore, it can be observed

that it is not worthwhile to exchange a high amount of individuals in short intervals. With increasing
intervals a larger part of the population has to be exchanged in order to achieve a positive impact on the
performance.

Nevertheless, the above result cannot verify whether the improvements are really due to the inactive
population or just by exchanging individuals of some sort. Therefore, a comparison to completely random
individuals is necessary. Figure 3 presents the results of these runs graphically. The graph shows the same
trend, only this time the performance gain is clearly visible. Therefore, according to the results inserting
completely random individuals instead of individuals from the inactive population leads to a significantly
higher performance.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 20 10 3 1 0.5

re
la

tiv
e

pe
rfo

rm
an

ce
 to

 b
as

e
ca

se

migration amount [% of population size]

migration interval
1
2
4
8

Fig. 3. Relative performance (FirstIdealIndividual) of randomly injected individuals in relation to classic algorithm

Summing up, this experiment has shown that the individuals from the inactive population confer
a small adaptive advantage when the continuous migration strategy is used. Though, the source of the
advantage is not the inactive population but rather the act of injecting foreign individuals.

One could assume that the continuous migration strategy performs better when it is applied to a
continuously changing fitness function. This issue will be addressed later in the second experiment (cf.
section 4).

Abrupt migration In the first part of this section it has been shown that there is only a small benefit
in applying continuous migration to an abruptly changing fitness function. Abrupt migration – taking
place in the generation after the event of change – may be a more appropriate approach. To assess this
strategy the experiment was modified: The migration amount was varied between 1% and 100%whereas
the migration always took place right after a change was detected (i.e. migration rate of 100 generations).
Note that this ensures that each change is “detected” immediately (which may not be always possible in
reality, though). Again, a population size of 400 active and 400 inactive individuals was used.

The results of this experiment are shown in figure 4 in terms of relative performance in comparison
to the base case of a single, uniform population of 800 individuals.

The graph exhibits a clearly visible trend – higher migration amounts offer better performance. All
migration amounts over 1% perform significantly better than the classic algorithm. Furthermore, the
graph contains the relative performance values for randomly inserted individuals. Although the random
individuals still perform better than uniform populations they fall behind in comparison with individuals
which migrated between the two populations.

4.2 Experiment 2: continuous changes

This experiment has a similar structure to the first one. Now, the continuously changing Zero-One-Max
function is applied (cf. section 3.2). Preliminary experiments have shown that very small changes to the
fitness function didn’t pose a problem for the classic algorithm – it was able to follow this royal road
[8] and always found an ideal individual at once. Therefore, the fitness function used in this experiment
changes its optimum value every 20 generations by 20%.

In contrast to the first experiment, the algorithms didn’t find all ideal individuals (50 in total) any
more – the interval between two changes was too short to allow for adaptation to the changed fitness

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 75 50 25 10 1

re
la

tiv
e

pe
rfo

rm
an

ce
 to

 b
as

e
ca

se

migration amount [% of population size]

migration interval
exchanged

random

Fig. 4. Relative performance (FirstIdealIndividual) of abrupt migration in comparison to classic algorithm

function. The results of the classic algorithm are shown in table 4. Note that in this experiment two
fitness measures are provided, namely IdealIndividualsFound, which indicates the effectiveness of the
search, and FirstIdealIndividual, which refers to the efficiency. According to the results the IdealIndivid-
ualsFound in a run on average increase with bigger populations. The generation the FirstIdealIndividual
is found decreases at first with growing population size, but for populations larger than 600 individuals it
increases again.

Table 4. Continuous change: performance of classic algorithm for various population sizes

Population size 100 200 400 600 800 1000 2000
IdealIndividualsFound (average) 40.13 41.67 43.60 45.00 46.20 47.07 48.67
FirstIdealIndividual (average) 6.54 6.13 6.12 6.16 6.32 6.38 6.35

Continuous migration The evaluation of adaptability was performed analogous to the first experiment.
At the beginning, the modified algorithm was configured to perform continuousmigration with migration
rate of 2, migration amount of 3% and the same selection methods like described in section 4.1. This time,
the comparison between the classic and the modified algorithm are based on two metrics. The results of
the experiment are shown in table 5.

Table 5. Benchmarking the modified algorithm for different population sizes

Total (active+inactive) population size 200 400 800 2000
IdealIndividualsFound regular algorithm 41.67 43.60 46.20 48.67
IdealIndividualsFound modified algorithm 40.23 41.10 42.97 45.07
p-value 1.49E-5 7.71E-11 2.53E-13 3.85E-15
Algorithm with better performance regular regular regular regular
FirstIdealIndividual regular algorithm 6.13 6.12 6.32 6.35
FirstIdealIndividual modified algorithm 5.67 5.14 5.14 5.43
p-value 2.49E-5 3.66E-14 2.28E-18 5.05E-18
Algorithm with better performance modified modified modified modified

The modified algorithm performs consistently worse than the classic one in terms of IdealIndivid-
ualsFound. On the other hand, the ideal individuals it did find, emerged significantly faster. Though,
there is an inherent dependency between these two metrics, and FirstIdealIndividual has to be interpreted
carefully. Whether this behaviour is satisfactory depends on the problem at hand, of course.

Again, a detailed analysis for a fixed population of total size 800 was performed in order to deter-
mine the influence of the parameters migration rate and migration. In this case, the modified algorithm
performs worse for all combinations of the parameters (cf. figure 5). The graph shows a vague falling
trend for higher migration amounts.

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 20 10 3 1 0.5

re
la

tiv
e

pe
rfo

rm
an

ce
 to

 b
as

e
ca

se

migration amount [% of population size]

migration interval
1
2
4
8

Fig. 5. Relative performance (IdealIndividualsFound) of modified algorithm in relation to classic algorithm

Interestingly, the performance of randomly selected immigrants is very similar to individuals chosen
from the inactive subpopulation. Table 6 shows that a statistical analysis of the averaged results for vari-
ous migration amounts offers no significant advantage for exchanged individuals. This finding indicates
that solving this specific dynamic fitness function does not profit from external genetic material. Instead,
the injected genetic material slows down evolution.

Table 6. Relative performance of random individuals in relation to migrated individuals

Migration amount 0.5% 1% 3% 10% 20%
IdealIndividualsFoundmigrated individuals 43.69 43.28 43.00 41.63 40.65
IdealIndividualsFound random individuals 43.51 43.48 42.96 41.61 40.54
p-value 0.34 0.25 0.83 0.90 0.40
Algorithm with better performance - - - - -

In this experiment migrating individuals between populations did not confer adaptive advantage. To
be sure, the efficiency of finding the new optimum solution was increased, but this was only achieved at
the cost of a lower effectiveness.

Abrupt migration Applying abrupt migration with long migration intervals to a continuously changing
fitness function seems like the wrong approach. In order to support this suggestion, the tests from the first
experiment were rerun (migration amount: between 1% and 100%, migration interval: 100 generations,
population size: 400 active and 400 inactive individuals).

Table 7. High migration intervals lead to poor performance of modified algorithm

Migration amount 1% 10% 25% 50% 75% 100%
IdealIndividualsFound (migrated individuals) 43.73 43.37 42.80 41.37 40.20 40.00
IdealIndividualsFound (random individuals) 43.73 43.33 42.90 41.37 40.07 40.00

The results of this experiment are shown in table 7. Obviously, neither migrated individuals nor
randomly injected individuals are able to improve the performance, which is due to the wrong migra-
tion interval. With increasing migration amounts the performance decreases further because more of the
problem knowledge incorporated in the proper population is destroyed on immigration.

4.3 Summary of analysis on adaptive advantage

This section evaluated hypothesis 1, i.e. migrating individuals between active and inactive subpopulations
can confer adaptive advantage in a dynamic environment. On the basis of the experiments performed

this hypotheses could only be established for applying abrupt migration to an abruptly changing fitness
function.

While it is conceivable that continuous migration is not able to cope with an abruptly changing en-
vironment, it is rather surprising that it also fails when facing a continuously changing fitness function.
However, it has to be noted that the reason for the poor performance is different. In experiment 1 the
continuous migration offered some adaptive advantage, but it was outperformed by the injection of ran-
dom individuals. On the other hand, in experiment 2 neither migrated nor random individuals were able
to achieve performance gains employing any of the two migration strategies.

Finally, it was observed that applying the wrong migration strategy to a dynamically changing fitness
function is likely to decrease the performance of an algorithm. Therefore, a rough understanding of the
dynamics of the fitness function is required for utilising the benefit of migration.

5 Evaluation of diversity

In this section hypothesis 2, that migrating individuals between active and inactive subpopulations can
delay convergence and retain diversity, will be evaluated. The setup is the same as in experiment 1,
using the abruptly changing fitness function. In table 8 the two diversity metrics (cf. section 3.2) are
compared for different population sizes. The values listed there are the averaged mean values of the
active population over all generations and all runs.

Table 8. Averaged diversity measures for classic and modified genetic algorithm

Population size (active+inactive) 200 400 800 2000
StandardDeviationOfFitness (classic) 0.00074 0.00075 0.00076 0.00076
StandardDeviationOfFitness (modified) 0.00198 0.00200 0.00204 0.00206
p-value 0 0 0 0
more diverse population modified modified modified modified
GenomeVariability (classic) 9.59 9.84 9.99 10.06
GenomeVariablility (modified) 9.45 9.82 10.05 10.18
p-value 0 0.043 0 0
more diverse population classic classic modified modified

The StandardDeviationOfFitness metric clearly indicates that exchanging individuals between pop-
ulations increases the diversity in terms of fitness in a population. This finding is consistent with the
GenomeVariability only for larger populations, though. Although hypothesis 2 cannot be confirmed gen-
erally by the results of this basic experiment, there is substantial evidence that migrating individuals
increases the overall diversity in the active population.

Besides evaluating the diversity of the proper population it is also interesting to have a look how the
inactive population is affected by the migration. Table 9 presents a number of averaged metrics for the in-
active population of the experiment with total population size of 800 (migration rate 2, migration amount
3%). In this case the diversity of the inactive population is increased by the immigrating individuals. This
is due to the random selection of immigrants from the proper population. In a scenario in which more
individuals migrate (third row in the table) the inactive population loses its ability to maintain diversity.
Instead, it tracks the fitness function almost as precisely as the active population does (for comparison:
the mean fitness of the active population is 0.74 in this run). This finding can explain the poor perfor-
mance for scenarios with a low migration interval but a high migration amount: In an event of change the
migrated individuals are not distinct enough and thus cannot confer adaptive advantage any more.

Table 9. Averaged diversity measures for inactive population (total size 800)

Inactive population mean fitness StandardDeviationOfFitness GenomeVariability
classic algorithm 0.50 0.00201 20.01
modified algorithm (amount=3%) 0.53 0.00523 22.59
modified algorithm (amount=20%) 0.65 0.00355 16.11

6 Discussion and future work

Naturally, it is difficult to generalise the results presented in this paper. They are only valid for the
Zero-One-Max fitness function. The application of the two migration strategies to various other fitness
functions may reveal a more complete picture. Furthermore, the fact that continuous migration performs
poorly in context of a continuous fitness function is non-intuitive.While my results suggest that migration
is the wrong approach for this sort of fitness functions, again this may well be problem-specific. More
research in this direction seems necessary, therefore.

Another opportunity for future work is the use of different selection methods for determining the
individuals to migrate and the ones to replace. In the presented experiments random selection was used
in the active population, tournament selection was used in the inactive one. A preliminary experiment
using random selection for both populations has shown that the selection method has a non-negligible
influence: Randomly selected immigrants performed significantly worse (α= 0.05). While this is a quite
intuitive result, an in-depth look into different selection methods seems necessary.

A more profound evaluation of diversity in the subpopulations could be another area of future re-
search. The presented averaged metrics can only serve as a vague indicator as they are not exploiting the
existing problem knowledge. For a start, only the diversity of generations at which a change occurred
could be evaluated. Furthermore, it would be especially interesting to evaluate diversity introduced by
random individuals in order to understand their superior performance in experiment 1.

Finally, a change of the general setup is possible. The approach in this paper exchanges individuals
between subpopulations completely independently in two steps. Another option might be to swap specific
individuals between the subpopulations or swapping the whole populations. Based on this modified setup
a comparison between swapping individuals and swapping parts of the genome like in the Swappers
approach [6] would be possible.

7 Conclusion

This paper has shown that exchanging individuals between subpopulations can confer adaptive advan-
tage. The most prominent performance increase was observed for abruptly changing fitness functions
which were tackled with abrupt migration. In all other cases, though, the performance of the presented
modification to the genetic algorithm was not able to offer superior performance. An important finding
was the fact that applying the wrong exchanging strategy to a dynamic fitness function leads to extremely
poor performance.

In terms of diversity the modified algorithm was more successful. The exchanged individuals in-
creased the diversity in both, the active and the inactive population. Apart from these results, a number
of performance evaluation methods and metrics were presented which may be of general use for further
research.

References
1. H.G. Cobb. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having
continuous, time-dependent nonstationary environments. Technical report, Naval Research Laboratory, Washing-
ton, 1990.

2. D.E. Goldberg and R.E. Smith. Nonstationary function optimization using genetic algorithms with dominance
and diploidy. In J.J. Grefenstette, editor, International Conference on Genetic Algorithms, pages 59–68. Lawrence
Erlbaum Associates, 1987.

3. J.H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, 1975.
4. H. Homayounfar, S. Areibi, and F. Wang. An advanced island based GA for optimization problems. In The Third

International DCDIS Conference on Engineering Applications and Computational Algorithms, 2003.
5. L.Z. Klinkmeijer. A serial population genetic algorithm for dynamic optimization problems. http://www.cs.uu.nl/
˜dejong/publications/spa.pdf (visited on 2006-11-22), 2006.

6. J.R. Levenick. Swappers: Introns promote flexibility, diversity and invention. In Morgan Kaufmann, editor,
GECCO-99 Proceedings of the Genetic and Evolutionary Computation Conference, pages pp. 361–368, 1999.

7. J. Lewis, E. Hart, and G. Ritchie. A comparison of dominance mechanisms and simple mutation on non-stationary
problems. In A.E. Eiben, T. Baeck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature in LNCS, volume 1498, pages 139–148. Springer, 1998.

8. M. Mitchell, S. Forrest, and J.H. Holland. The royal road for genetic algorithms: Fitness landscapes and GA
performance. In Proceedings of the First European Conference on Artificial Life. MIT Press, 1991.

9. J.D. Schaffer and D. Offutt L.J. Eshelman. Spurious correlations and premature convergence in genetic algo-
rithms. In G.J.E. Rawlins, editor, Foundations of GAs and Classifier Systems. Kaufmann, San Mateo, CA, 1991.

