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Abstract. Quantum effects are a natural phenomenon and just like evo-
lution, or immune systems, can serve as an inspiration for the design of
computing algorithms. This study illustrates how a quantum-inspired
evolutionary algorithm can be constructed and examines the utility of
the resulting algorithm on a problem in financial modelling known as
model calibration. The results from the algorithm are shown to be ro-
bust and comparable to those of other algorithms.

1 Introduction

The objective of this study is to illustrate the potential for using a quantum
rather than a traditional encoding representation in an evolutionary algorithm,
and also to assess the utility of the resulting algorithm for the purposes of cali-
brating an option pricing model.

In recent years there has been a substantial interest in the theory and design
of quantum computers, and the design of programs which could run on such
computers. One interesting strand of research has been the use of natural com-
puting (for example GP) to generate quantum circuits or programs (algorithms)
for quantum computers [1]. There has also been associated work in a reverse
direction which draws inspiration from concepts in quantum mechanics in order
to design novel natural computing algorithms. This is currently an area of active
research interest. For example, quantum-inspired concepts have been applied
to the domains of evolutionary algorithms [2–6], social computing [8], neuro-
computing [9–11], and immuno-computing [12, 13]. A claimed benefit of these
algorithms is that because they use a quantum representation, they can main-
tain a good balance between exploration and exploitation. It is also suggested
that they offer computational efficiencies as use of a quantum representation can
allow the use of smaller population sizes than typical evolutionary algorithms.

Quantum-inspired algorithms offer interesting potential. As yet, due to their
novelty, only a small number of recent papers have implemented a QEA, typically
reporting good results [5, 6]. Consequently, we have a limited understanding of
the performance of these algorithms and further testing is required in order
to determine both their effectiveness and their efficiency. It is also noted that
although a wide-variety of biologically-inspired algorithms have been applied for
financial modelling [7], the QEA methodology has not yet been applied to the
finance domain. This study addresses both of these gaps.
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Fig. 1. Quantum-inspired evolutionary computing

2 The Quantum-inspired Genetic Algorithm

The best-known application of quantum-inspired concepts in evolutionary com-
puting is the quantum-inspired genetic algorithm (QIGA) [2, 5, 6]. The (QIGA)
is based on the concepts of a qubit (quantum bit) and the superposition of
states. In essence, in QIGAs the traditional representations used in evolutionary
algorithms (binary, numeric and symbolic) are extended to include a quantum
representation. Under a quantum representation, the basic unit of information is
no longer a bit which can assume two distinct states (0 or 1), but is a quantum
system. Hence, a qubit (the smallest unit of information in a two-state quantum
system) can assume either of the two ground states (0 or 1) or any superposition
of the two ground states (the quantum superposition). A qubit can therefore be
represented as

|qi〉 = α|0〉+ β|1〉 (1)

where |0〉 and |〉 are the ground states 0 and 1, and α & β are complex numbers
that specify the probability amplitudes of the two ground states. The act of
observing (or measuring) a qubit projects the quantum system onto one of the
ground states. |α|2 is the probability that the qubit will be in state 0 when
it is observed, and |β|2 is the probability that it will be in state 1. Hence, a
qubit encodes the probability that a specific ground state will be seen when an
observation takes place, rather than encoding the ground states themselves. In
order to ensure this probabilistic interpretation remains valid, the values for α
and β are constrained such that |α|2 + |β|2 = 1.

More generally, a quantum system of m qubits can represent a total of 2m

states simultaneously. In the language of evolutionary computation a system of
m qubits can be referred to as a quantum chromosome and can be written as a
matrix

[
α1 α2 . . . αm

β1 β2 . . . βm

]
(2)



A key point when considering quantum systems is that they can compactly
convey information on a large number of possible system states. In classical bit
strings, a string of length n can represent 2n possible states. However, a quantum
space of n qubits has 2n dimensions. This means that even a short qubit can con-
vey information on many possible system states. For example, a 3 bit quantum
system can encode 8 (23) distinct binary strings, and an 8 bit quantum system
can encode 256 distinct strings. Due to its probabilistic interpretation, a single
qubit of length m can simultaneously represent all possible bit strings of length
2m. This implies that it is possible to modify standard evolutionary algorithms
to work with a single quantum individual, rather than having to use a popula-
tion of solution encodings. The qubit representation of the system states can also
help maintain diversity during the search process of an evolutionary algorithm,
due to its capability to represent multiple system states simultaneously.

2.1 The Algorithm

There is no single QIGA, rather there are a family of possible algorithms which
could be derived from the joint quantum-evolutionary metaphor. However, the
following algorithm provides an example of a canonical QIGA

Set t=0
Initalise Q(t)

Create P(t) by undertaking an observation of Q(t)

Evaluate P(t) and select the best solution

Store the best solution in P(t) into B(t)

While (t < max t)
t=t+1
Create P*(t) by undertaking observations of Q(t-1)
Evaluate P*(t)
Update Q(t)
Store the best solutions in B(t-1) and P(t) into B(t)

Endwhile

Initially, the population of quantum chromosomes is created Q(t) = q1(t), q2(t), . . . , qn(t),
where n is the population size, and each member of the population consists of
an individual qubit of length m. The α and β values for each qubit are set to 1√

2

in order to ensure that the states 0 and 1 are equally likely for each qubit.1 If
there is domain knowledge that some states are likely to lead to better results,
this can be used to seed the initial quantum chromosome(s). Once a population
of quantum chromosomes are created, these can be used to create a population
of binary (or solution encoding) strings by performing an ‘observation’ on the
quantum chromosomes. One way of performing the observation step is to draw a
random number rnd ∈ [0, 1]. If rnd > |αi(t)|2, the corresponding bit (j) in pj

i (t)
is assigned state 1, otherwise it is assigned state 0. Due to the stochastic nature

1 The probability of either state 0 or 1 is (
“

1√
2

”2

= 0.50).



of the observation step, the QIGA could be implemented using a single quan-
tum chromosome, where this chromosome is observed multiple times in order
to generate the population P (t) = p1(t), p2(t), . . . , pi(t). Alternatively, a small
population of quantum chromosomes could be maintained, with each chromo-
some being observed a fixed number of times in order to generate P (t). In the
while loop, an update step is performed on the quantum chromosome(s). This
update step could be performed in a variety number of ways, for example by us-
ing pseudo-genetic operators, or by using a suitable quantum gate (see below).
However the step is undertaken, its essence is that the quantum chromosome is
adjusted in order to make the generation of the best solution found so far, more
likely in the next iteration. As the optimal solution is approached by the QIGA
system, the values of each element of the quantum chromosome tend towards
either 0 or 1, corresponding to a high probability that the quantum chromosome
will generate a specific solution vector (pi) when observed.2

Quantum Mutation Quantum mutation is loosely inspired by the standard
GA mutation operator. However, this is adapted so that the mutation step is
guided by the best individual found to date, with the quantum chromosome
being altered in order to make the generation of this solution more likely in
future iterations of the algorithm [5, 6].

Qpointer(t) = a ∗Bbestsolution(t) + (1− a) ∗ (1−Bbestsolution(t)) (3)

Q(t + 1) = Qpointer(t) + b ∗ randnorm(0, 1) (4)

where Bbestsolution(t) is the best solution found by iteration t. Qpointer(t) is a
temporary quantum chromosome which is used to guide the generation of Q(t+1)
towards the form of Bbestsolution. The term randnorm(0, 1) is a random number
drawn from a (0,1) normal distribution. The parameters a and b control the
balance between exploration and exploitation, with a governing the importance
attached to Bbestsolution(t) and b governing the degree of variance generation,
centred on Qpointer(t). Values of a ∈ [0.1, 0.5] and b ∈ [0.05, 0.15] are suggested
by [5, 6].

An alternative way to generate the quantum mutation is to use a transfor-
mation matrix (quantum rotation gate). The idea in using the quantum rotation
gate is to steer the direction of the mutation towards the best performing indi-
vidual in the population. The ith qubit value (αi, βi) is updated as follows

[
α
′
i

β
′
i

]
=

[
cos(θi) −sin(θi)
sin(θi) cos(θi)

] [
αi

βi

]
(5)

2 For example, a quantum chromosome (1 1 1) will generate an observed solution
chromosome of (0 0 0) with probability 1, regardless of the choice of the parameter
rnd in the observation step.



where θi is the rotation angle of each qubit towards either 0 or 1. The definition
of θi is problem specific and it controls the speed of convergence of the algorithm.
Readers are referred to [3] for more detail on this approach.

3 Option Pricing Model Calibration

An optimisation problem in financial modelling is considered to test the per-
formance of the QIGA. The optimisation involves calibrating an option pricing
model to observed market data. Calibration is a method of choosing model pa-
rameters so that the distance between a set of model option prices and market
option prices is minimised, where distance is some metric such as the sum of
squared errors or the sum of squared percentage errors. The parameters can
be thought to resemble the market’s view on current option prices and the un-
delying asset price. In calibration we do not explicitly take into account any
historical data. All necessary information is contained in today’s option prices
which can be observed in the market. Practitioners frequently calibrate option
pricing models so that the models provides a reasonable fit to current observed
market option prices and they then use these models to price exotic derivatives
or for hedging purposes. In this paper we calibrate a popular extension of the
Black-Scholes [16] option pricing model known as the Variance Gamma (V G)
model [17–19] to FTSE 100 index option data.

A European call option on an asset St with maturity date T and strike price
K is defined as a contingent claim with payoff at time T given by max [ST −K, 0].
The well known Black-Scholes (BS) formula for the price of a call on this asset
is given by

CBS (St,K, r, q, τ ;σ) =Ste
−qτN (d1)−Ke−rτN (d1)

d1 =
− lnm +

(
r − q + 1

2σ2
)
τ

σ
√

τ
d2 = d1 − σ

√
τ

where τ = T − t is the time-to-maturity, t is the current time, m = K/S is
the moneyness of the option, r and q are the continuously compounded risk-free
rate and dividend yield and N(·) is the cumulative normal distribution function.
Suppose a market option price, denoted by CM (St,K), is observed. The Black-
Scholes implied volatility for this option price is that value of volatility which
equates the BS model price to the market option price as follows

σBS (St,K) >0
CBS (St,K, r, τ ;σBS (St,K)) =CM (St,K)

If the assumptions underlying the BS option pricing model were correct, the BS
implied volatilities for options on the same underlying asset would be constant
for different strike prices and maturities. However in reality the BS implied
volatilities are varying over strike price and maturity. Given that the options are



written on a single underlying asset this result seems at first paradoxical, i.e. we
have a number of different implied volatilities for a single asset which should
only have one measure for its volatility. Yet if we relax some of the assumptions
in the BS model, such as allowing for a more complex data generating process
for the asset price than the log normal stochastic process (as assumed by BS),
and take into account the resulting complications, this result begins to make
sense and is simply highlighting the erroneous assumptions that underpin the
BS model.

Many different option pricing models have been proposed as alternatives to
the BS model. Examples include stochastic volatility models and jump diffusion
models which allow for more complex asset price dynamics. We examine one such
simple extension of the BS model known as the Variance Gamma (V G) option
pricing model. The idea is to model stock price movements occurring on business
time rather than on calendar time using a time transformation of a Brownian
motion. The resulting model is a three parameter model where roughly speaking
we can interpret the parameters as controlling volatility, skewness and kurtosis,
denoted respectively as σ, θ and ν, of the underlying asset returns distribution.
Closed form option pricing formulae exist under the V G model [19].

CV G (St,K, r, τ ; {σ, ν, θ}) =Ste
−qτΨ

(
d

√
1− c1

ν
, (α + s)

√
ν

1− c1
,
τ

ν

)

−Ke−rτΨ

(
d

√
1− c2

ν
, αs

√
ν

1− c2
,
τ

ν

)

where

d =
1
s

[
ln

(
St

K

)
+ (r − q) τ +

τ

ν
ln

(
1− c1

1− c2

)]

α =ςs, ς = − θ

σ2
, s =

σ√
1 +

(
θ
σ

)2 ν
2

c1 =
ν (α + s)2

2
, c2 =

να2

2

and where Ψ is defined in terms of the modified Bessel function of the second
kind.

4 Experimental Approach

Market makers in the options markets quote BS implied volatilities rather than
option prices even though they realise BS is a flawed model. The first row in Ta-
ble 1 depicts end-of-day settlement Black-Scholes implied volatilities for FTSE
100 European options on the 17 March 2006 for different strike prices and a
time-to-maturity of 35 days. As can be seen the BS implied volatilities are not
constant across the strike price. The second and third row in Table 1 converts



the BS implied volatities into market call and put prices by substituting the BS
implied volatilities into the Black-Scholes formula. The following input param-
eters were used to calculate the option prices, the index price is the FTSE 100
index itself St = 5999.4, the interest rate is the one month Libor rate converted
into a continuously compounded rate r = 0.0452 and the dividend yield is a
continuously compounded dividend yield downloaded from Datastream and is
q = 0.0306. These prices are then taken to be the observed market option prices.
Out-of-the money (OTM) option prices are considered most suitable for calibra-
tion purposes because of their liquidity and informational content. Hence OTM
call prices were used for K < S and OTM put prices were used for K > S in
the calibration. The calibration problem now amounts to choosing an optimum
parameter vector Θ = {σ, ν, θ} such that an objective function G (Θ) is min-
imised. In this paper the objective function is chosen to be the absolute average
percentage error (APE)

G (Θ) =
1
N

N∑

i=1

∣∣∣∣
Ci − Ci (Θ)

Ci

∣∣∣∣

where Ci is the observed market price on the i-th option (could be a call or a put)
and Ci (Θ) is the V G model price of the i-th option with parameter vector Θ. One
of the difficulties in model calibration is that the available market information
may be insufficient to completely identify the parameters of a model [20]. If
the model is sufficiently rich relative to the number of market prices available,
a number of possible parameter vector combinations will be compatible with
market prices and the objective function G (Θ) may not be convex function
of Θ. A plot of the objective function versus the two parameters controlling
skewness and kurtosis of the asset returns distribution, θ and ν, whilst keeping
σ fixed at σ = 0.1116 is shown in figure 2(a).

Strike price 5695.2 5845.1 5995.0 6144.9 6294.7

IV (%) 13.76 12.41 11.13 10.44 10.94
Call($) 323.67 193.63 88.67 28.03 7.99
Put ($) 12.44 31.63 75.89 164.48 293.67

Table 1. Market BS implied volatilities and option prices for FTSE 100 index options
on the 17 March 2006. The strike prices are given in the table and the other observable
inputs are S = 5999.4, τ = 35

365
, r = 0.0452 and q = 0.0306.

It displays a flat profile near the minimum where many parameter combina-
tions will yield equivalent fits. The error surface is not a straightforward error
surface and a local optimiser might not converge to the true optimum. There
are regions where the error surface is very flat for changes in the parameter val-
ues and there are regions where the optimiser might get not converge to global
optimum.
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Fig. 2. Objective function versus model parameters ν and θ and objective function
versus generation number.

5 Results

In all runs of the QIGA, a population size of 10 observed chromosomes was
used, the algorithm was allowed to run for 200 generations, and all reported
results are averaged over 20 runs. In order to provide a benchmark for the results
obtained by the QIGA a deterministic Matlab optimiser called fminsearch was
run 20 times with different initial parameter vectors. The optimiser converged to
different values for Θ for different initialisations of the parameter vector so the
one with the optimal value for the objective function G was chosen. The results
are reported in the Tables 2 and 3. As can be seen when averaged over only 20
runs the QIGA parameter vector Θ is very close to the optimal parameter vector
from matlab. Figure 2(b) depicts the evolution of the global objective function
G (also known as APE) as a function of the generation number. Figures 3(a)
and 3(b) depict the evolution of the parameters ν and θ as a function of the
generation number. The results reported in Table 3 are where the exploitation
and exploration parameters are changed to those values reported in the table and
everything else remains fixed. It can be seen that the performance of the QIGA is
not as good as with the previous values and perhaps the exploitation parameter
is too small and the exploration parameter is too large for this problem. Further
sensitivity analysis would need to be conducted to find optimal values for these
parameters.

6 Conclusions & Future Work

This study illustrates how a quantum-inspired evolutionary algorithm can be
constructed and examines the utility of the resulting algorithm on a problem in
financial modelling known as model calibration. The results from the algorithm
are shown to be robust and comparable to those of other algorithms.



Parameter QIGA Matlab Market Price Mean Model Price Mean APE

mean σ 0.1140 0.1143 12.44 12.92 0.1664
mean ν 0.0682 0.0638 31.64 32.06
mean θ -0.1405 -0.1429 75.90 75.69

28.02 28.00
7.99 7.93

Table 2. Results of QIGA where the average parameter values after 30 runs are com-
pared with the average parameters from 20 runs of a matlab optimiser. The resulting
mean model prices from the 20 runs are compared with the market prices and the mean
APE is reported.The exploitation and exploration parameters have now been changed
to 0.1ε and 0.3ε.

Parameter QIGA Matlab Market Price Mean Model Price Mean APE

mean σ 0.1138 0.1143 12.44 12.72 0.1593
mean ν 0.0627 0.0638 31.64 31.84
mean θ -0.1372 -0.1429 75.90 75.65

28.02 28.13
7.99 7.98

Table 3. Results of QIGA where the average parameter values after 30 runs are com-
pared with the average parameters from 20 runs of a matlab optimiser. The resulting
mean model prices from the 20 runs are compared with the market prices and the mean
APE is reported. The exploitation and exploration parameters have now been changed
to 0.3ε and 0.5ε.
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Several extensions of the methodology in this study are indicated for future
work. The first extension would be to extend the QIGA to a higher dimensional
setting so that the computational benefits of QIGA really begin to take affect.
Other extensions would include an analysis of the Q-gate operator and how it is
updated through δθ, and an analysis of the parameters used in the algorithm.
Financial applications include the calibration and estimation of more complex
higher dimensional models to market data in an evolutionary setting so that
information on model uncertainty is calculated as an integral part of the algo-
rithm. The use of QIGA in high dimensional financial modelling settings may
be crucial due to the potential reduction in computational time.
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