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Abstract
In grammatical evolution the selection of the grammar for a specific problem can naturally affect the solution 
at the very end. Optimizing the parameters for the evolutionary algorithm is – for grammatical evolution – 
only one part of getting good or even the best results. The selection of the grammar should be taken very 
seriously, the more complex a grammar is designed, the bigger is the search space for finding a solution. The 
experiments will show, that problems should be evaluated carefully at the beginning to find the right and 
simple grammar for the specific problem.

1. Introduction
Papers  within  grammatical  evolution  and  other  biologically  inspired  algorithms  often  describe 
optimization experiments for various parameters of the different algorithms. This paper is not different, 
but  it  focuses on a parameter,  that is very often untreated, the grammar. A solution for a specific 
problem can derive from many different grammars, but only a few well-designed grammars can force 
the algorithm to find the right (or best) solution.

[Brabazon 2006] describes, that grammatical evolution extends the biological analogy by employing 
principles from genetics that have been uncovered by molecular biologists. Grammatical evolutions 
most important new feature in comparison to other biological algorithms is the mapping from genotype 

to phenotype as modeled from nature. In nature the 
genotype (the genetic material stored in the DNA) 
contains instructions to control the development of 
a  living  organism  (the  phenotype).  These 
instructions get extracted from the genetic material 
and are different to the molecules responsible for 
the phenotype (proteins).

As  stated  in  [O'Neill  2003]  in  grammatical 
evolution, the genotype is represented as a binary 
string provided by a search engine, a grammatical 
algorithm.  This  binary  string  corresponds  to  the 
DNA  in  the  nature.  This  DNA is  transcribed  to 
RNA, in grammatical evolution the binary string is 
transformed  to  an  integer  string.  Each  integer 
corresponds  to  a  8-bit  codeon  from  the  binary 
string.  Now  the  mapping  process,  using  the 
grammar,  starts:  The  integer  string  is  mapped to 
rules from a provided grammar. In nature a similar 
process takes place: the RNA is transformed to a 
sequence of amino acids. These acids are the basic 
modules for proteins. In grammatical evolution the 
rules  together  represent  a  program or  a  function. 
This program or individual  can then be executed 
and tested to see if  it  meets the requirements.  In 
nature the proteins describe a specific effect on the 
living organism, imaginable the color of the eyes of 

Fig. 1: Grammatical evolution and the biological  
system (from www.grammatical-evolution.org)



a human being or the of fingers on the left hand. The whole process is also presented in figure 1 as a 
diagram from [GE 2006]. It also shows the two stages transcription, where the binary string is finally 
transcribed to an integer string, and translation, where the integer string is  translated to a specific 
individual.

The  search engine  is  in  the normal  case  a  genetic  algorithm, so  parameters  as  the probability  of 
crossover and mutation, the population size and the number of generations has to be optimized within 
grammatical evolution to be sure to get the best results.
But  not  only genetic  algorithms are used for  the grammatical  evolution,  also alternatives  like  the 
particle swarm have been adopted to create the new approach grammatical swarm.

1.1 The grammar as an untreated parameter
As stated in [Wotawa 2006] grammars describe languages, more precisely grammars define possible 
words and sentences. Naturally not all possible sentences of a language will be written down, rules will 
be established, which allow to build sentences out of the words. So it is possible to construct a infinite 
number of sentences with a finite number of words.
In  grammatical  evolution  a  special  type  of  grammar  is  used,  the  BNF or  Backus-Naur  form.  As 
described in [Knuth 1964], BNF is a metasyntax used to express context-free grammars. 

[Brabazon 2006] describes, that within grammatical evolution a suitable BNF grammar definition has 
to be defined. “The BNF can either be the specification of an entire language or, perhaps more usefully, 
a subset of a language geared the problem at hand.” Unfortunately, no description or explanation is 
given on that. As stated in the beginning, a solution can derive from many different grammars. The 
derivation tree and so the genotype can be very different to each other, but they can build the same 
sentence and therefor represent a right solution. The question is, how much the design of a grammar 
effects the search of a solution. Which mistakes should be avoided when designing a grammar for the 
grammatical evolution algorithm?
In Table 1 two grammars are presented. They both can construct the same sentences in the language, 
but the derivation tree is slightly different. Because the derivation tree is different, also the genotype 
will be different. It is hard to guess, which genotype would be found faster by an genetic algorithm, as 
in this particular case every bit can change the individual at the end.

<expr> := 01<expr> | 01 <expr> := 0 <expr1> | 01
<expr1> := 1 <expr> | 1

Table 1: Two different grammars with the same sentences in the language

Often, it is hard to find a simple grammar for a specific problem. Within grammar design and building 
compilers, there are several rules, how to get a simpler grammar out of a complex one. For further 
understanding  of  grammars  and  how  to  work  with  them,  [Wotawa  2006]  could  be  useful.  Also 
compiler principles and  techniques are useful to understand the importance of simple grammars.

1.3 Related Work
Researchers  focus  on  optimizing  the  parameter  for  the  genetic  algorithm  and  show  for  specific 
problems, with which parameters they get the best result. In [O'Neill 2004] the idea of meta-grammars 
was adopted. A meta-grammar is a grammar that describes a construction of another grammar. “This 
grammatical  evolution  by  grammatical  evolution  (GE²)  approach  allows  the  grammar  itself  to  be 
evolved and has been shown to be particularly effective in dynamic environments” [Brabazon 2006]. 
The mGGA (the meta-grammar genetic algorithm) has been described, that can automatically compose 
blocks of symbols that can be reused to construct a solution. In this paper, the focus is on grammars, 
that are designed by hand, no meta-grammar is used. If the grammar is well designed, it will probably 
also be better than self-constructed grammars by the algorithm.



2. Experiments
Within  the  two  experiments  described  below,  the  libGE-library  in  version  0.26  for  grammatical 
evolution [GE 2006] was used. For the search engine the suggested galib in version 2.4.6 was used. 
The experiments were designed to test following hypothesis:

Hypothesis: The  simpler  a  grammar  is  designed,  the  faster  and  better  the  grammatical  evolution 
algorithm finds the best solution.

2.1 Setting for the experiments
For all experiments, the same parameters for the genetic algorithm was used. The population size was 
1000 individuals, the algorithm ran for only 10 generations. Probability of crossover was 90% and for 
mutation  1%.  Five  runs  were  performed.  The  parameters  are  also  listed  in  Table  2.  Nearly  all 
parameters are default parameters of the genetic algorithm, because they were not very important. The 
main focus of the experiments is to show the difference of the various grammars.

Parameters for the GA
population size 1000
number of generations 10
probability of crossover 0.9
probability of mutation 0.01
Table 2: Parameters for the experiments, if parameters 
are not listed, the default parameter was used.

2.1.1 The fitness function
The fitness function used in the experiments is a rather dummy function. It calculates the difference of 
input  and  output,  sums  up  all  20  test-cases,  inverts  this  score  and  adds  the  quantity  of  correct 
calculations. Shortly, the fitness score is most of the time between 0 and 1, only if it gets the correct 
solution, the score is 20 to indicate the best solution.

2.1.2 The different grammars
In every experiment, four different grammars were used to show the difference of the behavior of the 
grammatical evolution algorithm. In the experiments, symbolic regression problems were used to test 
different  grammars.  These  symbolic  regression  problems  chosen  for  the  experiments  only  need 
addition  and  multiplication  operations.  The  first  grammar  has  a  very  simple  design  and  fits  the 
specification to be able to construct such basic symbolic regression problems.

<expr> ::= <expr> <op> <expr>
           | <var>
<op>   ::= + | *
<var>  ::= X

Listing 1: Simple Grammar

The  start  symbol  for  this  recursive  grammar  is  <expr>.  Such  an  expression  can  either  become a 
sequence  of  an  expression  an  operator  and  another  expression  (<expr>  <op>  <epr>)  or  simply  a 
variable  (<var>).  The  non-terminal  operator-symbol  (<op>)  can  become  the  addition-  or  the 
multiplication-sign (+ or -). The variable-symbol can only become the variable “X”.
The disadvantage of the first grammar is the design of the first non-terminal <expr>. In almost 50 % of 
the time, it will become “var” initially, because the algorithm can choose between two possibilities. So 
the result “X” will appear very often as an individual. With exchanging the non-terminal <var> directly 
with  “X”,  the  grammar  would  become even  shorter,  also the  derivation tree  will  slightly  become 
shorter, but for expandability and flexibility the grammar was designed like this.



The second grammar forces the sentence to grow to a minimum depth of 2. The start symbol “expr” 
can only be transformed to the sequence <var> <op> <expr1>, what means, that the solution “X” is no 
longer possible. It would be possible, if the start symbol would be <expr1> instead if <expr>, but the 
grammar  was  especially  designed  to  avoid  this  sort  of  individuals.  The  <expr1>-symbol  can 
recursively transform into <expr>, so that the sentence can also grow until infinity like the first one. 
The operators and variables haven't changed.

<expr>  ::= <var> <op> <expr1>
<expr1> ::= <expr>
        | <var>
<op>    ::= + | *
<var>   ::= X

Listing 2: Grammar 2, forces growth

The third grammar is not very different to the second one, it only shows its difference in the derivation 
tree, because its design is slightly more complicated as the second grammar. The only difference really 
is, that <expr1> can not be transformed into <expr> anymore. The size of the language is exactly the 
same as  with the second grammar. Also, if the <expr> line would be deleted, the functionality of the 
rules would be the same and so the language. With deleting the first line, the grammar would also 
become very similar to the first grammar, what naturally was intended. All the grammars should be 
very similar and should nearly only vary in the derivation tree for the sentences. 
It  also  forces  the  growth  to  depth  two and  gets  the  same result  as  the  second grammar,  but  the 
derivation tree should be much smaller.

<expr>  ::= <var> <op> <expr1>
<expr1> ::= <var> <op> <expr1>
        | <var>
<op>    ::= + | *
<var>   ::= X

Listing 3: like Grammar 2 but with smaller derivation tree

The fourth grammar is  also similar  to the second one, but now some noise is  introduced. A third 
operator  sign, the subtraction, can be used, as a variable the constant  number “1” is  added to the 
variable-list.

<expr>  ::= <var> <op> <expr1>
<expr1> ::= <expr>
        | <var>
<op>    ::= + | * | -
<var>   ::= X | 1

Listing 4: Grammar with “noise”

The last grammar can cover the largest language of all, since it has two more terminals, an operator and 
a variable. Elsewhere it has no other differences to the grammars shown above. To find the right and 
best solution, the genetic algorithm has to search a lot more as with the other grammars, which present 
the real basic rules for constructing the symbolic regression problems. 

2.1.3 Test cases
In every experiment every individual was tested with 20 test cases, simply the input-values from 1 to 
20.  Every  individual  was  represented  as  a  C++-file,  was  compiled  by  the  grammatical  evolution 
algorithm and tested. 



2.2 Experiment 1
The first task for the grammatical evolution was to find the simple solution 4x² or as it would derive 
from the grammars: X * X + X * X + X * X + X * X. Here two things are very important 
for the grammatical evolution algorithm. First the correct genotype has to be able to grow to the correct 
depth and second the codeons for  the operators must  alternate,  one bit  determines whether  it  is  a 
multiplication or an addition. 

2.2.1 Results for Grammar 1
The maximum score was 1.9997, which means, that the best individual had nearly two right outputs for 
the input values. The computed best individual looked like: X * X + X + X + X * X * X, which was 
already found in generation three, but the genetic algorithm could not evolve better individuals after 
that. The average of all scores was at 0.0511.

2.2.2 Results for Grammar 2
The algorithm found the same best individual as with grammar 1, so the maximum score with 1.9997 
was the same. The best individual was already found in the initial population. With 0.0971 the average 
of all scores was much higher than with grammar one. The force to start with a depth of two could be 
the reason for the better average, because the high percentage of individuals that are presented as an 
“X” will effect the overall average score a lot.

2.2.3 Results for Grammar 3
Also the third grammar didn't change the results. The algorithm found the same individual, the average 
of all scores was slightly unde
r that from grammar 2 with 0.0811. Also here the force to grow to depth 2 is clearly visible to have a 
positive effect on the solution. 

2.2.4 Results for Grammar 4
With the noise of grammar four, the results were clearly different compared to the first three tests. The 
best individual (X – X – 1 + X + 1 * X) gets only a score of 1.00012, the average of all scores 
was only 0.02108.

Fig. 2: performance of the mean scores for experiment 1
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2.2.5 Conclusion for experiment 1
Experiment  1  did  not  show,  that  the  simplest  grammar  is  the  best  for  this  problem,  because  the 
algorithm  found  the  same  individual  with  the  first  three  grammars.  Figure  2  shows,  that,  from 
generation number 5, the average score was the best in the tests with grammar one. 
One thing, that you can see from these results is, that noise in the grammar, say terminals, that you will 
not need in the solution, can have a very high effect on the found solution. In this experiment the test 
with grammar 4 was the worst in nearly every generation. So this shows that a complex grammar 
should not be chosen for such kind of problems, since it seems to complicate the search for a good 
individual since the search base is much grater.

2.3 Experiment 2
Since the results from experiment one are not very satisfying, a new experiment was started. Now, the 
problem is also simple but more complex to derive it: x4 + x³ + x² + x. Now the sentence has to grow 
even longer, the search should take longer to find a good individual. The settings were naturally the 
same as in experiment one. As in experiments one, all four grammars are able to construct the solution 
in demand.

2.3.1 Results for Grammar 1
Grammar one found the correct individual (X * X * X * X + X * X + X * X * X + X) in 
the first tun, so it found the maximum score of 20. The average score of the whole population over the 
five runs was only 0.057001 due to the fact, that also in this case many “X”-individuals were produced. 
The discovery of the right solution was only a “lucky punch”. Like in experiment one, the mean score 
in the first nine generations increases slightly, with the discovery of the right solution it gets its highest 
point with 0.23.

2.3.2 Results for Grammar 2
Grammar two only had a best score of 1.00002, presenting X * X + X + X + X * X * X * X 
as its best individual. The average score was, like in experiment one, better than with grammar one. 
The average of all scores was at 0.07899. Also here, the mean score increases slightly through the 
generations. Although the algorithm did not find the best solution, the mean score in the last generation 
is with 0.24 a little bit higher than with the first grammar.

2.3.3 Results for Grammar 3
Also grammar three did not find the best solution. With the individual X * X + X * X + X * X 
* X * X + X it also only got 1.00002 score-points. With a average score of 0.0430014 it is also not 
as good as the second grammar, although the grammars seem to be the same. In this test, the mean 
score  is  going  up  and  down  through  the  generations  with  its  highest  score  in  generation  4  with 
0.0700018 score points.

2.3.4 Results for Grammar 4
Like in experiment one, the test with grammar four did not perform very well. The maximum score 
was only 1 and the average of all scores was down to 0.0220014. This confirms, that noise in the 
grammar has a bad affect on the solution.

2.3.5 Conclusion for experiment 2
In experiment two, only the test with the first grammar found the right solution. As stated in the result, 
this discovery is probably the luck of the genetic algorithm, because the mean values were very low in 
each generation.



Fig. 3: performance of the mean scores for experiment 2

In figure 3 the mean scores for every grammar in every generation is plotted. Grammar 2, although it 
does not find the correct solution after 10 generations, performs best and has the best mean score over 
all ten generations. 

3. Discussion
The two experiments were very similar and so provided nearly the same behavior. Both experiments 

Fig. 4: max, mean and min score for grammar 4 in experiment 1
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show, that a poorly-designed grammar with terminals not needed, like grammar 4, have an affect on the 
solution  because  the  search  space  is  much higher  than  with  the  other  grammars.  With  a  genetic 
algorithm, that would be optimized for such symbolic regression problems, the results would be much 
more  better,  the  best  solution would be  found faster  and  more  often.  As  this  paper  focus on the 
grammars itself, this optimization of the genetic algorithm was ignored and default parameters were 
used. 

It  is  hard to  guess,  whether  the algorithms would have  performed better  with optimization of  the 
parameters, future work will have to investigate the behavior. I assume, that, like in the experiments 
here, the grammar with noise will always perform not as good as the simple one.
Grammar 4, with one more operand and a additional constant, had never the chance to perform better 
than the other grammars. Figure 4 shows, that the maximum score was always around 1, the minimum 
and  mean  score  where  very  low,  the  mean  score  was  always  under  0.045.  There  is  no  visible 
performance or dynamic in the results of grammar 4, what shows, that such poorly-designed grammars 
have a tendency to perform as bad as they can.

The  experiments  performed  quite  similar  with  the  three  other  grammars,  because  the  grammars 
themselves were very similar. Out of these three, the second grammar, which forced the algorithm to 
grow to a depth of 2, performed best according to the mean score over all generations. The results of 
the third grammar differ a little bit to the results of the second one, which has probably to do with the 
different derivation of the sentences. Would the experiments go on with more generations and better 
parameters, I assume that grammar 2 and 3 would also find the best solution.

4. Conclusion

The two experiments overall not really satisfy the hypothesis, that the simplest grammar will always 
perform best. Although grammar one has found the right solution in experiment two, the mean score 
did  not  perform  as  good  as  with  grammar  2.  Otherwise,  the  results  show,  that  poorly-designed 
grammars are not useful for finding good solutions, since the performance, as we see in figure 4, does 
not increase during the whole evolving of new generations.

So first,  we can definitely summarize,  that grammars should be well designed within grammatical 
evolution. Every terminal, that is not needed in the solution, should not be used in the rules of the 
grammar. So the hypothesis made in section 2 is half way right.

What about the statement, that always the simplest grammar will perform best? On the first view on the 
results,  this is also true since grammar one is the only one, that could find the correct solution in 
experiment two. So we could say, that the hypothesis is true. If we have a deeper view on the results 
and compare the mean scores of the grammars, we can see, that the performance of grammar two is 
better and the solution of grammar one was probably only luck. 

The reason, that grammar two performs better is obvious. Grammar two forces the algorithm to grow to 
depth two initially, so, the grammar shows the algorithm already the right way at the beginning. So 
grammar two is in fact the simplest grammar for the presented symbolic regression problems, because 
it contains all terminals needed without noise and starts already with depth 2, what, in fact, is a big 
advantage to grammar one, where 50 % of the individuals will be “X”. 

So overall, we can say, that the two experiments showed, that the hypothesis in section two, that the 
grammatical evolution algorithm will perform better and will find the solution faster, if the grammar is 
simple and well designed, is true. 



5. Future Work

For the future, there are several areas to think about and several experiments to perform to underline 
the correctness of the hypothesis. First of all, the experiments should run with optimized parameters for 
the genetic algorithm. This will show, that with optimized search engine, the grammar is still very 
important to find correct solutions. 
Further,  the  fitness  function  could  be  updated  to  be  able  to  show  better  visualizations  of  the 
performance of the experiments.  Another attempt would be, to change the search engine and find out, 
if there would be a difference in the performance of the different grammars.
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