
Importance of selecting adequate grammars for specific

problems within grammatical evolution

Christian Dobnik

School of Computer Science & Informatics
University College Dublin

Abstract
In grammatical evolution the selection of the grammar for a specific problem can naturally affect the solution
at the very end. Optimizing the parameters for the evolutionary algorithm is – for grammatical evolution –
only one part of getting good or even the best results. The selection of the grammar should be taken very
seriously, the more complex a grammar is designed, the bigger is the search space for finding a solution. The
experiments will show, that problems should be evaluated carefully at the beginning to find the right and
simple grammar for the specific problem.

1. Introduction
Papers within grammatical evolution and other biologically inspired algorithms often describe
optimization experiments for various parameters of the different algorithms. This paper is not different,
but it focuses on a parameter, that is very often untreated, the grammar. A solution for a specific
problem can derive from many different grammars, but only a few well-designed grammars can force
the algorithm to find the right (or best) solution.

[Brabazon 2006] describes, that grammatical evolution extends the biological analogy by employing
principles from genetics that have been uncovered by molecular biologists. Grammatical evolutions
most important new feature in comparison to other biological algorithms is the mapping from genotype

to phenotype as modeled from nature. In nature the
genotype (the genetic material stored in the DNA)
contains instructions to control the development of
a living organism (the phenotype). These
instructions get extracted from the genetic material
and are different to the molecules responsible for
the phenotype (proteins).

As stated in [O'Neill 2003] in grammatical
evolution, the genotype is represented as a binary
string provided by a search engine, a grammatical
algorithm. This binary string corresponds to the
DNA in the nature. This DNA is transcribed to
RNA, in grammatical evolution the binary string is
transformed to an integer string. Each integer
corresponds to a 8-bit codeon from the binary
string. Now the mapping process, using the
grammar, starts: The integer string is mapped to
rules from a provided grammar. In nature a similar
process takes place: the RNA is transformed to a
sequence of amino acids. These acids are the basic
modules for proteins. In grammatical evolution the
rules together represent a program or a function.
This program or individual can then be executed
and tested to see if it meets the requirements. In
nature the proteins describe a specific effect on the
living organism, imaginable the color of the eyes of

Fig. 1: Grammatical evolution and the biological
system (from www.grammatical-evolution.org)

a human being or the of fingers on the left hand. The whole process is also presented in figure 1 as a
diagram from [GE 2006]. It also shows the two stages transcription, where the binary string is finally
transcribed to an integer string, and translation, where the integer string is translated to a specific
individual.

The search engine is in the normal case a genetic algorithm, so parameters as the probability of
crossover and mutation, the population size and the number of generations has to be optimized within
grammatical evolution to be sure to get the best results.
But not only genetic algorithms are used for the grammatical evolution, also alternatives like the
particle swarm have been adopted to create the new approach grammatical swarm.

1.1 The grammar as an untreated parameter
As stated in [Wotawa 2006] grammars describe languages, more precisely grammars define possible
words and sentences. Naturally not all possible sentences of a language will be written down, rules will
be established, which allow to build sentences out of the words. So it is possible to construct a infinite
number of sentences with a finite number of words.
In grammatical evolution a special type of grammar is used, the BNF or Backus-Naur form. As
described in [Knuth 1964], BNF is a metasyntax used to express context-free grammars.

[Brabazon 2006] describes, that within grammatical evolution a suitable BNF grammar definition has
to be defined. “The BNF can either be the specification of an entire language or, perhaps more usefully,
a subset of a language geared the problem at hand.” Unfortunately, no description or explanation is
given on that. As stated in the beginning, a solution can derive from many different grammars. The
derivation tree and so the genotype can be very different to each other, but they can build the same
sentence and therefor represent a right solution. The question is, how much the design of a grammar
effects the search of a solution. Which mistakes should be avoided when designing a grammar for the
grammatical evolution algorithm?
In Table 1 two grammars are presented. They both can construct the same sentences in the language,
but the derivation tree is slightly different. Because the derivation tree is different, also the genotype
will be different. It is hard to guess, which genotype would be found faster by an genetic algorithm, as
in this particular case every bit can change the individual at the end.

<expr> := 01<expr> | 01 <expr> := 0 <expr1> | 01
<expr1> := 1 <expr> | 1

Table 1: Two different grammars with the same sentences in the language

Often, it is hard to find a simple grammar for a specific problem. Within grammar design and building
compilers, there are several rules, how to get a simpler grammar out of a complex one. For further
understanding of grammars and how to work with them, [Wotawa 2006] could be useful. Also
compiler principles and techniques are useful to understand the importance of simple grammars.

1.3 Related Work
Researchers focus on optimizing the parameter for the genetic algorithm and show for specific
problems, with which parameters they get the best result. In [O'Neill 2004] the idea of meta-grammars
was adopted. A meta-grammar is a grammar that describes a construction of another grammar. “This
grammatical evolution by grammatical evolution (GE²) approach allows the grammar itself to be
evolved and has been shown to be particularly effective in dynamic environments” [Brabazon 2006].
The mGGA (the meta-grammar genetic algorithm) has been described, that can automatically compose
blocks of symbols that can be reused to construct a solution. In this paper, the focus is on grammars,
that are designed by hand, no meta-grammar is used. If the grammar is well designed, it will probably
also be better than self-constructed grammars by the algorithm.

2. Experiments
Within the two experiments described below, the libGE-library in version 0.26 for grammatical
evolution [GE 2006] was used. For the search engine the suggested galib in version 2.4.6 was used.
The experiments were designed to test following hypothesis:

Hypothesis: The simpler a grammar is designed, the faster and better the grammatical evolution
algorithm finds the best solution.

2.1 Setting for the experiments
For all experiments, the same parameters for the genetic algorithm was used. The population size was
1000 individuals, the algorithm ran for only 10 generations. Probability of crossover was 90% and for
mutation 1%. Five runs were performed. The parameters are also listed in Table 2. Nearly all
parameters are default parameters of the genetic algorithm, because they were not very important. The
main focus of the experiments is to show the difference of the various grammars.

Parameters for the GA
population size 1000
number of generations 10
probability of crossover 0.9
probability of mutation 0.01
Table 2: Parameters for the experiments, if parameters
are not listed, the default parameter was used.

2.1.1 The fitness function
The fitness function used in the experiments is a rather dummy function. It calculates the difference of
input and output, sums up all 20 test-cases, inverts this score and adds the quantity of correct
calculations. Shortly, the fitness score is most of the time between 0 and 1, only if it gets the correct
solution, the score is 20 to indicate the best solution.

2.1.2 The different grammars
In every experiment, four different grammars were used to show the difference of the behavior of the
grammatical evolution algorithm. In the experiments, symbolic regression problems were used to test
different grammars. These symbolic regression problems chosen for the experiments only need
addition and multiplication operations. The first grammar has a very simple design and fits the
specification to be able to construct such basic symbolic regression problems.

<expr> ::= <expr> <op> <expr>
 | <var>
<op> ::= + | *
<var> ::= X

Listing 1: Simple Grammar

The start symbol for this recursive grammar is <expr>. Such an expression can either become a
sequence of an expression an operator and another expression (<expr> <op> <epr>) or simply a
variable (<var>). The non-terminal operator-symbol (<op>) can become the addition- or the
multiplication-sign (+ or -). The variable-symbol can only become the variable “X”.
The disadvantage of the first grammar is the design of the first non-terminal <expr>. In almost 50 % of
the time, it will become “var” initially, because the algorithm can choose between two possibilities. So
the result “X” will appear very often as an individual. With exchanging the non-terminal <var> directly
with “X”, the grammar would become even shorter, also the derivation tree will slightly become
shorter, but for expandability and flexibility the grammar was designed like this.

The second grammar forces the sentence to grow to a minimum depth of 2. The start symbol “expr”
can only be transformed to the sequence <var> <op> <expr1>, what means, that the solution “X” is no
longer possible. It would be possible, if the start symbol would be <expr1> instead if <expr>, but the
grammar was especially designed to avoid this sort of individuals. The <expr1>-symbol can
recursively transform into <expr>, so that the sentence can also grow until infinity like the first one.
The operators and variables haven't changed.

<expr> ::= <var> <op> <expr1>
<expr1> ::= <expr>
 | <var>
<op> ::= + | *
<var> ::= X

Listing 2: Grammar 2, forces growth

The third grammar is not very different to the second one, it only shows its difference in the derivation
tree, because its design is slightly more complicated as the second grammar. The only difference really
is, that <expr1> can not be transformed into <expr> anymore. The size of the language is exactly the
same as with the second grammar. Also, if the <expr> line would be deleted, the functionality of the
rules would be the same and so the language. With deleting the first line, the grammar would also
become very similar to the first grammar, what naturally was intended. All the grammars should be
very similar and should nearly only vary in the derivation tree for the sentences.
It also forces the growth to depth two and gets the same result as the second grammar, but the
derivation tree should be much smaller.

<expr> ::= <var> <op> <expr1>
<expr1> ::= <var> <op> <expr1>
 | <var>
<op> ::= + | *
<var> ::= X

Listing 3: like Grammar 2 but with smaller derivation tree

The fourth grammar is also similar to the second one, but now some noise is introduced. A third
operator sign, the subtraction, can be used, as a variable the constant number “1” is added to the
variable-list.

<expr> ::= <var> <op> <expr1>
<expr1> ::= <expr>
 | <var>
<op> ::= + | * | -
<var> ::= X | 1

Listing 4: Grammar with “noise”

The last grammar can cover the largest language of all, since it has two more terminals, an operator and
a variable. Elsewhere it has no other differences to the grammars shown above. To find the right and
best solution, the genetic algorithm has to search a lot more as with the other grammars, which present
the real basic rules for constructing the symbolic regression problems.

2.1.3 Test cases
In every experiment every individual was tested with 20 test cases, simply the input-values from 1 to
20. Every individual was represented as a C++-file, was compiled by the grammatical evolution
algorithm and tested.

2.2 Experiment 1
The first task for the grammatical evolution was to find the simple solution 4x² or as it would derive
from the grammars: X * X + X * X + X * X + X * X. Here two things are very important
for the grammatical evolution algorithm. First the correct genotype has to be able to grow to the correct
depth and second the codeons for the operators must alternate, one bit determines whether it is a
multiplication or an addition.

2.2.1 Results for Grammar 1
The maximum score was 1.9997, which means, that the best individual had nearly two right outputs for
the input values. The computed best individual looked like: X * X + X + X + X * X * X, which was
already found in generation three, but the genetic algorithm could not evolve better individuals after
that. The average of all scores was at 0.0511.

2.2.2 Results for Grammar 2
The algorithm found the same best individual as with grammar 1, so the maximum score with 1.9997
was the same. The best individual was already found in the initial population. With 0.0971 the average
of all scores was much higher than with grammar one. The force to start with a depth of two could be
the reason for the better average, because the high percentage of individuals that are presented as an
“X” will effect the overall average score a lot.

2.2.3 Results for Grammar 3
Also the third grammar didn't change the results. The algorithm found the same individual, the average
of all scores was slightly unde
r that from grammar 2 with 0.0811. Also here the force to grow to depth 2 is clearly visible to have a
positive effect on the solution.

2.2.4 Results for Grammar 4
With the noise of grammar four, the results were clearly different compared to the first three tests. The
best individual (X – X – 1 + X + 1 * X) gets only a score of 1.00012, the average of all scores
was only 0.02108.

Fig. 2: performance of the mean scores for experiment 1
1 2 3 4 5 6 7 8 9 1

0,000000

0,020000

0,040000
0

0,060000

0,080000

0,100000
0

0,120000

0,140000

0,160000
0

0,180000

Grm1
Grm2
Grm3
Grm4

2.2.5 Conclusion for experiment 1
Experiment 1 did not show, that the simplest grammar is the best for this problem, because the
algorithm found the same individual with the first three grammars. Figure 2 shows, that, from
generation number 5, the average score was the best in the tests with grammar one.
One thing, that you can see from these results is, that noise in the grammar, say terminals, that you will
not need in the solution, can have a very high effect on the found solution. In this experiment the test
with grammar 4 was the worst in nearly every generation. So this shows that a complex grammar
should not be chosen for such kind of problems, since it seems to complicate the search for a good
individual since the search base is much grater.

2.3 Experiment 2
Since the results from experiment one are not very satisfying, a new experiment was started. Now, the
problem is also simple but more complex to derive it: x4 + x³ + x² + x. Now the sentence has to grow
even longer, the search should take longer to find a good individual. The settings were naturally the
same as in experiment one. As in experiments one, all four grammars are able to construct the solution
in demand.

2.3.1 Results for Grammar 1
Grammar one found the correct individual (X * X * X * X + X * X + X * X * X + X) in
the first tun, so it found the maximum score of 20. The average score of the whole population over the
five runs was only 0.057001 due to the fact, that also in this case many “X”-individuals were produced.
The discovery of the right solution was only a “lucky punch”. Like in experiment one, the mean score
in the first nine generations increases slightly, with the discovery of the right solution it gets its highest
point with 0.23.

2.3.2 Results for Grammar 2
Grammar two only had a best score of 1.00002, presenting X * X + X + X + X * X * X * X
as its best individual. The average score was, like in experiment one, better than with grammar one.
The average of all scores was at 0.07899. Also here, the mean score increases slightly through the
generations. Although the algorithm did not find the best solution, the mean score in the last generation
is with 0.24 a little bit higher than with the first grammar.

2.3.3 Results for Grammar 3
Also grammar three did not find the best solution. With the individual X * X + X * X + X * X
* X * X + X it also only got 1.00002 score-points. With a average score of 0.0430014 it is also not
as good as the second grammar, although the grammars seem to be the same. In this test, the mean
score is going up and down through the generations with its highest score in generation 4 with
0.0700018 score points.

2.3.4 Results for Grammar 4
Like in experiment one, the test with grammar four did not perform very well. The maximum score
was only 1 and the average of all scores was down to 0.0220014. This confirms, that noise in the
grammar has a bad affect on the solution.

2.3.5 Conclusion for experiment 2
In experiment two, only the test with the first grammar found the right solution. As stated in the result,
this discovery is probably the luck of the genetic algorithm, because the mean values were very low in
each generation.

Fig. 3: performance of the mean scores for experiment 2

In figure 3 the mean scores for every grammar in every generation is plotted. Grammar 2, although it
does not find the correct solution after 10 generations, performs best and has the best mean score over
all ten generations.

3. Discussion
The two experiments were very similar and so provided nearly the same behavior. Both experiments

Fig. 4: max, mean and min score for grammar 4 in experiment 1

1 2 3 4 5 6 7 8 9 10
0,0000000

0,0250000

0,0500000

0,0750000

0,1000000

0,1250000

0,1500000

0,1750000

0,2000000

0,2250000

0,2500000

1 2 3 4 5 6 7 8 9 1
0,000000

0,100000

0,200000

0,300000

0,400000

0,500000

0,600000

0,700000

0,800000

0,900000

1,000000

1,100000

Grm1
Grm2
Grm3
Grm4

max
mean
min

show, that a poorly-designed grammar with terminals not needed, like grammar 4, have an affect on the
solution because the search space is much higher than with the other grammars. With a genetic
algorithm, that would be optimized for such symbolic regression problems, the results would be much
more better, the best solution would be found faster and more often. As this paper focus on the
grammars itself, this optimization of the genetic algorithm was ignored and default parameters were
used.

It is hard to guess, whether the algorithms would have performed better with optimization of the
parameters, future work will have to investigate the behavior. I assume, that, like in the experiments
here, the grammar with noise will always perform not as good as the simple one.
Grammar 4, with one more operand and a additional constant, had never the chance to perform better
than the other grammars. Figure 4 shows, that the maximum score was always around 1, the minimum
and mean score where very low, the mean score was always under 0.045. There is no visible
performance or dynamic in the results of grammar 4, what shows, that such poorly-designed grammars
have a tendency to perform as bad as they can.

The experiments performed quite similar with the three other grammars, because the grammars
themselves were very similar. Out of these three, the second grammar, which forced the algorithm to
grow to a depth of 2, performed best according to the mean score over all generations. The results of
the third grammar differ a little bit to the results of the second one, which has probably to do with the
different derivation of the sentences. Would the experiments go on with more generations and better
parameters, I assume that grammar 2 and 3 would also find the best solution.

4. Conclusion

The two experiments overall not really satisfy the hypothesis, that the simplest grammar will always
perform best. Although grammar one has found the right solution in experiment two, the mean score
did not perform as good as with grammar 2. Otherwise, the results show, that poorly-designed
grammars are not useful for finding good solutions, since the performance, as we see in figure 4, does
not increase during the whole evolving of new generations.

So first, we can definitely summarize, that grammars should be well designed within grammatical
evolution. Every terminal, that is not needed in the solution, should not be used in the rules of the
grammar. So the hypothesis made in section 2 is half way right.

What about the statement, that always the simplest grammar will perform best? On the first view on the
results, this is also true since grammar one is the only one, that could find the correct solution in
experiment two. So we could say, that the hypothesis is true. If we have a deeper view on the results
and compare the mean scores of the grammars, we can see, that the performance of grammar two is
better and the solution of grammar one was probably only luck.

The reason, that grammar two performs better is obvious. Grammar two forces the algorithm to grow to
depth two initially, so, the grammar shows the algorithm already the right way at the beginning. So
grammar two is in fact the simplest grammar for the presented symbolic regression problems, because
it contains all terminals needed without noise and starts already with depth 2, what, in fact, is a big
advantage to grammar one, where 50 % of the individuals will be “X”.

So overall, we can say, that the two experiments showed, that the hypothesis in section two, that the
grammatical evolution algorithm will perform better and will find the solution faster, if the grammar is
simple and well designed, is true.

5. Future Work

For the future, there are several areas to think about and several experiments to perform to underline
the correctness of the hypothesis. First of all, the experiments should run with optimized parameters for
the genetic algorithm. This will show, that with optimized search engine, the grammar is still very
important to find correct solutions.
Further, the fitness function could be updated to be able to show better visualizations of the
performance of the experiments. Another attempt would be, to change the search engine and find out,
if there would be a difference in the performance of the different grammars.

References

[Brabazon 2006] Brabazon A., O’Neill M. 2006. Biologically Inspired Algorithms for Financial
Modelling. Springer.

[GE 2006] www.grammatical-evolution.org, visited 22.11.2006

[Knuth 1964] Knuth D. - 1964, Backus Normal Form vs. Backus Naur Form in Communications of the
ACM 7

[O'Neill 2003] O'Neill, Ryan C. - 2003, Grammatical Evolution. Evolutionary Automatic
Programming in an Arbitrary Language.

[O'Neill 2004] O’Neill M., Ryan C. - 2004. Grammatical Evolution by Grammatical Evolution: The
Evolution of Grammar and Genetic Code. in Proceedings of EuroGP 2004.

[Wotawa 2006] Wotawa F. 2006. Software-Paradigmen – Skriptum zur Lehveranstaltung
(Spftwareparadigms – Lecture Notes)

http://www.grammatical-evolution.org/

