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Abstract

The purpose of this paper and the experiments atedinerein is to assess the impact of variatiquaiticle
inertia (v), particle incrementcf) and global increment{), on the fitness of particles and there impactupo
particle swarm optimization in a dynamic environmén this paper a 3-dimensional parabolic funci®atilized
to illustrate an example of a dynamic environm&esults show that the impact of PSO in this enviremmavill
not be significantly enhanced by the alteratiowo€; or c,,

1 Introduction

Kennedy and Eberhart formally introduced the idé&article Swarm Optimization (PSO) in their
1995 paper [1], draw on information and theoriesrira wide range of authors, from several different
schools of thought; they arrive at the conclustbiat several key ideas are inherent to a collaerat
system.

Kennedy and Shi [2] built on previous researchhwite development of an inertia factor which is
designed for “balancing the global search and Isearch” [2]. This idea of enabling a degree of
flexibility in the way in which the PSO searchesaitechnique by which the particles can get trdppe
by local maximum, and alter a swarm'’s explore-eitmlgnamic.

The idea of dynamic environment for PSO is not @ fea, much work has been done in this field
with regards to reworking the traditional PSO aitpon in order give it extra capability to work with

a dynamic environment [3], (by the resetting of atigles at various stages and other methods). It
should be noted there is quite a degree of ovértyween the motives of this paper and [4], as both
dealing with a dynamic environment; however the msewith which the swarm is dealt with are
intrinsically different, by the alteration of theeirtia and increment values.

The experimentation section of this paper will fe@n testing various modifications of the cognitive
(c) and Social €) weightings as well as the inertia value) (of the particles of the swarm to
understand better the way in which different vasamay possibly lead to an all-round more efficient
standard PSO configuration.

2 Related Works

The idea of using a PSO algorithm to solve a dyngmoblem has been researched quite widely [4]
[6] [7], many authors see it as representing réalisal world challenges [4] [6].

Preliminary works in the field [4], Suggested twaim modifications that could be made to the PSO
algorithm in order to provide better swarm for kiag a dynamic global optima. The modifications are
based on the idea of resetting each particle peldwest position in the environment; which can be
undertook in two different ways.

The first being that particles reset thpbest score at fixed points in time, such as after aasgunt of
evolutions. The second approach is for the resettmr when there is a certain magnitude of change
in the environment.

Overall [4] does show that there is a general beme$earching for an optimum when both approaches
are used, However, certain constraints such adythemic optima’s velocity in the search space being
not greater than the max velocity of the swarmwadl as the additional performance overheads
inflicted upon the particle update algorithm areognised as possible problems.



Another approach provided by [6], suggests the @fean enhanced update function for each particles
storage of its best fithess, whereby with the ifiction of evaporation weighting to a particles
previous best position will enable a particle, otlex course of time to reset jbest position. The
TDPSO put forward by [6], does show a marked imprognt over the standard PSO algorithm. The
paper also gives guidelines regarding the most&fi=bounds for the evaporation factor.

The most recent paper in this field [7], looks ilddactors dictating how a single swarm, acting as
collaborative sub-swarms, can be tweaked in ordeericourage greater adaptability to a dynamic
environment. It should be noted that [7] is workimighin a multimodal dynamic environment which
adds a greater level of complexity to search. Inddrticle interaction is altered in two ways.

Firstly, exclusion, in order to include the ideatttat a local level particles will repel on anotler
order to stop two particles converging on a localkima and thwarting the benefit which could be
gained by achieving a more divergtest.

Secondly, an anti-convergence measure is emplayaxtder to enhance the possibility of a higher
global fitness being available. This measure idémgnted by re-initialising the worst sub swarmeonc
convergence of all swarms has occurred within amgarea.

Finally, the use of quantum particles, particleidghized at random, in a uniformed way around the
global best, is used and is seen by the authdnalsusto the notion of charged particles.

Overall, when compared to other approaches dealilg multimodal dynamic environments, the
multi-pronged approach employed by [7] does shodegree of benefit and is a generally more
effective at problem solving. In general theraigreat deal of work in the use of PSO in a dynamic
environment, however rather than alter the PSCOrittgo, this paper attempts to understand the rble o
variables in a standard PSO algorithm and invetstigdether it is possible to refine an optimisatign
using different values.

3 The Particle Swarm Algorithm

The core components of the PSO algorithm that lvélidealt with in this paper can be traced back to
work in [1] and [2]. Prior to the initialization cf PSO algorithm two very important aspects must be
defined. Firstly, in the search space in which plagticles must be conceptualised into a series of
dimensions, there must then be an evaluation fomatthich will allow a particle to grade itself and
deduce fitness value based on the values of itsdimensions.

Once the above have been successfully conceptiiaisevarm of particles (of a defined size) will be
initialised at random points throughout the sea#fice. The evaluation or fitness function can then
called to help every particle grade itself and ledsgh a personal besPlfest) position in the search
space. This process will also help to evaluate ipiarticle currently holds the highest personat bes
fitness. This particle will be known as the fittgsrticle in the search space and its location inéll
referred to as the global be&hest).

These globald;) and personal) maximums, alongside the previous velocity of plagticle {i(t)), as
seen in equation 1, will then be incorporated iatoelocity function ¥(t+1)) which will used to
dictate the directiornx((t+1)) and velocity for each of particle§ (movement upon the next evolution of
the swarm.

This cycle of updating oPbest and Gbest (if necessary), recalculating each particle fitnass
deciding the movement of each particle will contiruntil a desired condition has been reached.

In equation 1 there is as is also the incorporatibiwo random variableg (s r; and two constant
values €; ¢ C,), which represent the particle and global increhfdiscussed at length in section) in the
calculation of a particles new velocity.

vi(t + 1) = vi(t) + e1r1(ps — zi(t)) + cara(gs — zi(2))
.’L‘i(t + 1) = Ii(t) + ’Ui(t + 1)

Equation 1 - The Velocity and Locational Update Funtion of a Particle in a PSO (Without
Inertia weight)



'l}i(t + 1) — Ui(t) + 617‘1(])1‘ — .’L‘i(t)) + (127‘2(91' — mi(t))

Equation 2 - The Velocity and Locational Update Funtion of a Particle in a PSO (note Inertia
weight w)

Equation 1 represents an early and basic approéctheo PSO update function. Later works,
particularly [2], develop the idea of an inertiadtion that would take account of the significanta
particles previous velocity when calculating itseav velocity.

For the purpose of this paper, equation 2 will beduas the update function of each particle.
3.1 Particle Increment and Global Increment

In [1] the authors established that the degreeodiilsoration and individual determination of each
particle is an essential balance, which will dietdite effectiveness of the particles in converginghe
best solution (or near best) solution in an efficiway.

The variabless; & c,, are one of the cornerstones of the PSO thegisymbolises the weight or
significance placed on the cognitive aspect of gaaticle, which is represented in each particlésas
all time personal best positiopbgst). c, is a similar weighting mechanism which focusestangdlobal
best of the entire swarm, which dictates the degfeellaboration the particle engages with.

[1] Presents interesting findings on the influenfe, andc, in its “Cornfield Vector” simulation, in
which the authors shows that the weight given tcheaf the factors will have pivotal effect on the
velocity of a particle and how long it takes theasmw to converge on a possible solution. From the
point of view of a dynamic environment, where tbedtion of ideal fitness is constantly changingg th
may lead to a rethink the idea of the particle Weigs; it may be the case that a slower convemenc
on a solution may help the swarm to adapt bettédrg@nvironments dynamism.

3.2 Inertia Values

The idea conceptualized for the incorporation efitiertia value is outlined in [2]; it was broughto
the velocity update function in order to help enege the local searching capacity of a particlg. [2
Discusses how the final solution of a swarm is dedppendant on the initial location of particles i
the search space. The author highlights how thetaohvelocity tends to polarize the particlesha t
search space and may at times, encourage patict@mverge at too quick a rate and fall victimato
local maxima (expressed in the search spagbest) of a particular particle, Hence the rolevofs to
lead to a less high speed velocity update and eagewa greater exploration of each particles locali

The idea of local searching in an environment helaiticular relevance in a dynamic environment, as
it may often be the case that with limited numbgparticles, a swarm may find a greater degree of
exploration more beneficial than simple exploitataf already known regions of high fitness.

4 A Dynamic Environment

A dynamic environment is one in which the peak giiroal fitness is constantly shifting its position
the search area, there are a multitude of influewdaich can be factored into in order to define the
type of environment which is being understood.

The number of areas in an environment of high §isnés important when searching for peaks,
Multimodal environments are ones in which there raare than one area of high fitness [8]. These
could be conceptualised as a series of hills iaraldcape. Obviously, this type of environment will
have a far greater degree of complexity [8], whemgared to an environment in which there is one
main peak to be discovered.

The rate of change of any environment will be apdantant factor when assessing a swarm’s ability to
track the peak of greatest fithness. Works suclshbdve concluded that the optimal peak should not



move in the search space faster than the partialesly, as slow particles may not be able to cogee
on the peak because is moving too fast.

4.1 Three-Dimensional Parabolic Function

For the purpose of this paper a 3-dimensional mdiafunction will be used, this function has been
widely implemented in experiments of many papetg9p The singular peak of optimal fithess moves
around the environment based on an offset funcfexquation 4).

The offset function uses the combination of the mawcity of the swarm multiplied by a value, sst a
.1 for my experiments (as used by [6]), to defipewhich is then multiplied by a Gaussian random
number between 0 andrafd(0,1)). The offset is then completed by factoring in tifitset of previous
evolutions.

This offset is updated upon each evolution of thersn and is used within the fitness function
(equation 3) to help evaluate each particle withsnswarm.

fix)= Z[x_, + .f.'_,‘,li

Equation 3 - The Dynamic Fitness Function

sit+1l=s50t)+w, *rand (0.1}

Equation 4 - The Dynamic Offset Generation Function

5 Experiments

The experiments conducted in this paper have a aomimplementation; they utilize a modified
version of the JSwarm-PSO java package construmtddablo Cingolani (version 1.2). The package
was suited to the required tasks of the experimeagsit is modular and the core classes such as
Fi t nessFunction. java and theParticl e.java can be extended to include the dynamic
fitness function and 3 dimensional particles.

For the calculation of random numbers the expertmase the standard jayava. uti | . Random
This is used for generating both normal and Ganseamdom numbers (required by the dynamic
environment offset).

For each experiments result, a swarm of a stanslaed(25 or 10 for certain experiments) is initihte
which is designed to work within a search spaceadfixed size (1000 by 1000 andy axis
respectively). Each modified swarm completed aaiB0O0 evolutions. This process is repeated over a
series of 15 runs of each varying set of paramet&sssuch all values presented in the following
experiments are based on averages from these runs.

As outlined earlier the acceleration of the locatad the dynamic value is important, and as sueh th
speed has been restricted in this experiment tmhgeater than the maximum speed of a particles.

In general, the amount of runs and evolutions etk each swarm a sufficient amount of time to
solve the required problem and that extending Wea'sis evolutions beyond 300 is not necessary.

5.1 Experiment 1 - Varying Inertia Values in Regula sized and Small Swarm

This experiment is made up of two sub sectiondh lbdtwhich involving the testing of various inertia
values using different size swarms. All other vialeéa and influences have been set to standardssalue
as defined in section 5.



5.1.1 Regular Sized Swarm

The first set of tests conducted test the inerilaes of.9, .95, 1, 1.05, and1.1 on the standard swarm;
other values such a85 were tested but yielded no information of sigrifice. The most obvious
feature can be seen in the results of the averaggs$ of all particles in the swarm (Chart 1).

Evolution No.
1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 2Bl 295
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‘—W= .90,¢1=.9,c2=9—w=1.051c¢c1=.9,c2=.9—w=1,¢c1=.9,¢c2=.9 w=11,¢cl1=.9¢c2=.9=—w=.951c1=.9,c2=9

Chart 1 - Impact of Inertia on PSO fitness in a Dyamic Environment

As seen in Chart 1, an inertia value.®fappeared to have the greatest benefit to the swadnis
markedly different from the next best value. Othmartia values are at times quite far off the best
solution.

The inertia values played an important role in emaging particles within the swarm to explore their
locality and arrive at areas of better fitness. Tnaphs presented in Chart 2 expand on the data
presented in Chart 1, by including standard demainformation. This information is interesting ias
shows that in many instances there are solutiondadne that were of a better fitness, but duehw t
shift in inertia values there was not enough vé&jopresent in each particle for them to cluster, or
simply that the swarm is being pulled in a multéuof directions and was unable to form a consensus
on what the best position available is.

Interestingly enough the inertia value of the cumieich showed the greatest fitness, showed little
deviation from its best average position, this wogive the impression of a swarm which has
essentially stabilised in some way and is clusteted certain point, which is, over the coursehef t
runs, proved to be the highest fithess achievable.

It is important to maintain that although some #ohs were better than others, they were all
considerably inefficient at dealing with the prableroposed.
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Chart 2 - Impact of Inertia on PSO fitness in a Dyamic Environment (With Standard Deviation)

5.1.2 Small Sized Swarm

In order to test the impact of inertia change asmaller swarm, parameters were kept the same as in
the previous test, however with a swarm of popofasize 10. As outlined in section 3.2, the idea of
using a smaller swarm with various inertia valugsoi determine whether or not a small swarm will
benefit from a greater degree of exploration ompbjnbehave as per usual.

The average particle fitness for each run plottedvarious inertia values shows quite interesting a
different results when compared with the largerrsavpresented in Chart 1. The most obvious feature
presented by the chart, is that a smaller swarrmsde show a far greater degree of optimization
ability when using a higher inertia value, from eXments it would appear that an inertia weightfig
1.05 as being the optimal level, with a considerabia gaer alternative values.

When comparing the average fitness values genefiaedthe use of a small swarm, it is no surprise
that in the vast majority of cases, due to thecleamount of particles in the swarm, it is unabldind

as great a fitness value. However, from the resflthe experiment it is clear that by altering the
inertia value, a small swarm can offer equal otdvetolutions.
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Chart 3 - Impact of Inertia on PSO fitness in a Dymamic Environment (Small Swarm - 10
Particles)

Once again the various inertia values used foe#periments present some quite interesting behavior
when expressed with their standard deviation gra@éart 4). For instance the most effective swarm
has quite low bounds for its deviation, suggestivag the particles in the swarm are not movingat t
great a velocity and leading to the incorporatidnirelevant data. The deviation increases as the
general fithess of the swarm is reducing.

Impact of Inertia on Small Swarm PSO in a Dynamic Environment
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5.2 Experiment 2 — Modifying the Particle Incrementand Global Increment

In this experiment | plan on testing various valaéshe particle and global increment in order to
assess their impact upon the swarm’s ability tatecan area of high fitness within the dynamic
environment.

5.2.1 — Particle Increment

Particle increment is a metric which dictates thegght of influence a particle attaches to its quloest
score when calculating the movement upon the neofudon. In order to test the possible benefit for
the swarm, the swarm will be tested using fouredéht values 85, .90, .95, and 1).
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Chart 5 - Impact of Particle Increment on PSO in aDynamic Environment

Chart 5 displays the findings of the test of therfdifferent variants of;; the most obvious feature of
these results is the general lack of fitness tlaat eing gained from the variancecin Of the four
configurations implemented only two show any pdssgmin. These are the two extremes of the test
values.

Without further analysis of the results, it is ¢léhat particle increment on its own has only alsma
degree of leverage in the swarm’s ability to locat®l successfully track the global optimum in a
dynamic environment.

5.2.2 — Global Increment

Global increment;, is responsible for the weighting tlgbest variable in the update of a particles
position. For this experiment three value®s(..9 and 95) are tested in order to understand rgle
within the swarm, and the swarms’ ability to navégwards an optimum.
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Chart 6 - Impact of Global Increment on PSO in a Dypamic Environment

Chart 6 shows the difference in average fitnessnugach evolution, between the various increment
values, there is evidence of a considerable gd#iibatted to usage of a lowes This is quite interesting
as it displays how a swarm reacts differently bamethe weight it gives to the global best solution

The rise in fitness could be attributed to the that due to the dynamic nature of the environmiduet;
swarm is not as attracted to the global best seeasglobal best is constantly changing particles ar
discovering better solutions in the locality of tlebal best.

From information provided by the chart, it is saiiint to say that in a dynamic environment a lower
global increment value results in a greater fitneakue for the swarm. However it is once again
important to observe that the swarm with the bigse$s value was far from optimum.

6 Conclusions

From the experiments undertaken in this paperdbigous that a basic PSO algorithm is not extrgmel
effective at locating optimum results within a dgmia environment using a parabolic function,
However, the use of inertiav), particle incrementcf) and global increment4) do play a key role in
the swarms evolution and although when alterechem bwn they may not induce a significant gain. It
is possible, that by the combination of each of fdtors a swarm may become better at resolving
problems.

To conclude, from research undertaken by variotkaas [4] [7] [8] [9] , it has being demonstrated
that the alteration of the PSO algorithm as a whuale produce a greater degree of efficiency and
allow the swarm to wok effectively in a greater garof problems [7], with a vastly more complex
combination of dimensions and multi modal designs.



7 Future Works

Due to the constraints placed on this paper, it matspossible to investigate other areas of interes
these include the inter-relation of inertia, paetiancrement and global increment, and how a
combination of modification to each of the paran®taay cause the swarm to behave.

The dynamic environment was also an area whichdchalve being expanded, the possibility of
working with more than simply a three dimensiong# optima curve would have being explore.

Overall it must be said that work achieved, aneéaesh undertook in this project both served asutim
for interest in the field of PSO and consequenilytfer study of the area.
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