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Abstract
Much has been said in the past about the effectiveness of Evolutionary Algorithms (EA’s) and their ability to
evolve solutions to various optimization problems[1,4,]. A lot has also been written as to the effectiveness of 
evolved strategies for the Keepaway Soccer problem[2,3]. This paper is an attempt to place this performance 

in context and quantify the relative strengths and weaknesses of a hand-coded strategy versus that of an 
evolved strategy for keeping the ball. A good measure or this relative performance would be the amount of 

time the ball is in the possession of the Keepers or the amount of passes completed by the Keepers during the 
course of an individual Keepaway game or session. What was observed during the course of experiments was 

that the evolved strategy did similarly in comparison to the hand-coded strategy at keeping the ball. 
Therefore we can say that no major advantage accrues from using an evolutionary approach over the hand-

coded approach.

1. Introduction

Much of the literature of Evolutionary Algorithms and Evolutionary Computation waxes lyrical[1,4] 
about the effectiveness of the evolutionary technique for finding good solutions to problems but little 
concrete evidence of this is presented, sometimes it is said that EA’s produce human-competitive
results or better[1,6].  This paper is an attempt to concretize either way some of these views using the 
Keepaway domain as a test bed.

EA’s were designed to prove or disprove the thesis that simulating evolution would provide a tool for 
solving common optimization problems. EA’s based on simple models of natural evolution attempt in 
some way to capture the essence of what makes natural evolutionary processes successful. There are 
many different EA approaches available but they all share some commonality. EA’s are usually based 
on populations of solutions which allow for parallel search processes. EA’s commonly have innovation 
operators such as mutation which allow problems to be looked at from different perspectives.  EA’s 
also combine useful partial solutions to problems using recombination operators and grade solutions 
based on a fitness function. A fitness function is a measure of the effectiveness of a solution to a given 
problem. Selection is another important element in EA’s. Selection works by selecting the fittest 
individuals from a set of solutions based on their individual fitness’s. The EA used in my experiment 
was a real-valued EA whose aim was to modify two real parameter values and provide an effective 
solution to the Keeper problem. 

In Keepaway Soccer or just Keepaway, one team of Keepers tries to keep possession of a ball for as 
long as possible given the attempts of an opposing Attacker to get the ball. The game is played on a 
fixed size playing area , the number of keepers is greater than those of attackers but the Attackers are 
much faster than the Keepers. In the particular implementation studied in this paper there were three 
Keepers playing opposite a single Attacker. The Keepaway simulator used for the experiments was 
that developed by Daniel Kuebrich for the MASON[7]  environment. Daniel Kuebrich’s
implementation had extremely limited intelligence with both Keepers and Attackers simply following 
the ball and then randomly kicking it away anywhere. Invariably the faster Attacker would be first to 
the ball, kick it away randomly and only on the off chance that the attacker randomly kicked it into the 
path of a Keeper would any Keeper ever get a touch of the ball. What was needed was an effective 
hand-coded strategy for the keepers to act in a more structured manner and keep the ball using some 
level of intelligence, this strategy would then be used as a comparison against a competing evolved 



strategy developed using George Mason University's ECJ[11] evolutionary toolkit. Over a number of 
runs it should then become clear as to which is the more effective strategy and hence some measure of 
how well evolved strategies operate compared to hand coded strategies can be derived.

2. Strategies For Keepaway

The question here is what constitutes a good strategy for Keepaway.  Most of the best hand-coded 
strategies currently in operation are based on two basic methods;
HoldBall()
Pass()
Both these methods were implemented in slightly different ways in the systems of Gustafson[3,8] and 
Stone et al[9]. With HoldBall() the keeper simply holds the ball in the one position for as long as 
possible given the attackers attempts to get the ball. When HoldBall() is combined with a 
knowledge as to the relative position of teammates and the location of the attacker a keeper can make 
an informed decision as to how long to hold the ball before releasing it with a call to the pass method.
The pass method in many of the well established hand-coded strategies is also based on knowledge 
acquired from the environment about the relative position of teammates and the location of the 
Attacker. A good pass method such as that proposed by Stone, Sutton and Kuhlmann[5,9] has a 
weighting scheme whereby potential passes by Keepers are weighted based on the angles between 
Keepers and Attackers and the relative distances between Keepers. Gustafson also proposed some 
interesting additions to theses strategies including, the additions of a method for keepers not currently 
in possession to get into an open position[3] to make it easier for teammates to pass to them.
Another interesting strategy, and one which is used extensively in my hand-coded Keepaway strategy 
is what I call an aggressive strategy whereby the Keepers strategy is not simply to focus on waiting to 
receive the ball but to actively get the ball themselves at all times. This aggressive strategy has the 
result that when the keepers have the ball they form a tight circle around the ball passing among 
themselves thus not allowing the Attacker to easily win the ball without having to force itself through 
the tight formation of the Keepers. Strategies such as the ones outlined can hold the ball for a few 
seconds on average on a 100 x 100 playing field which is about as long as can be achieved at the 
present time. An evolved strategy draws its individual genes and genome from some of the parameters 
associated with these hand-coded strategies and then potentially evolves values for these parameters 
which would allow the keepers to hold the ball for a longer time than a hand-coded strategy with it’s 
statically defined parameters.

3. Tools

The two tools used in the experiments were MASON and ECJ.

3.1 MASON

MASON was designed to be a foundation on which to run large Java simulations. MASON was built 
using Java and allows for the visualization of experiments in the Evolutionary Computation domain. In 
the case of Keepaway it acts as a foundation on which the Keepaway simulation runs. One of the great 
advantages of MASON as a simulation environment is that it “delineates between model and 
visualization”[7], this separation of concerns allows you to focus primarily on the model and then think 
about the visualization issues later. The Keepaway simulator already in MASON was that developed by
Daniel Kuebrich. Kuebrichs’ version of Keepaway was very basic indeed with only simple go-to 
functionality for the keepers, they made no attempt to pass the ball and simply randomly kicked it away 
when they could. The Keepaway interface can be seen in Figure 1 with the individual keepers chasing 
the ball and a lone attacker doing likewise.



Figure 1 A View of the MASON Keepaway interface.

3.2 ECJ

ECJ is an Evolutionary Computation system written in Java. It is a highly flexible system which allows 
all the various settings for an evolutionary experiment to be defined in a parameter file. These
individual parameter files can then be used in conjunction with the toolkit to do experiments. The 
parameter file format is very flexible and allows you to easily modify parameters such as the 
probability of crossover, type of selection mechanism, type of representation and any other important 
parameters for individual experimental setups.

4. Experimental Setup

The experimental setup for the following experiments was quite simple. Both the hand-coded and the
strategy whose parameters had been evolved would be run 50 times with the total number of passes 
recorded for both the evolved and hand-coded strategies for a single run. Each run would be terminated 
as soon as an attacker gained possession of the ball.  Statistical information could then be drawn from
the number of passes achieved in individual runs. These numbers could then be compared and it should 
become clear which strategy was more effective.
The hand-coded policy as mentioned earlier was based on an aggressive strategy. This policy was seen 
to be quite effective with the Keepers able to pass the ball successfully for a few seconds on average. 
This policy was run 50 times and the statistical information taken from it. 
The evolved strategy was based on a Evolutionary Algorithm(EA) representation of the parameters to 
be evolved. It used a fixed size genome which encoded the two parameters that were identified as 
important for the Keepers control mechanism. These two parameters were floating point values which 
encoded the “sight” and kicking range parameters of the individual keepers respectively. These two 
values were statically set to 100.0 and 1.25 respectively in the hand-coded strategy. These values were 
seen to work effectively; the goal then was to evolve values for the parameters which would allow the 
Keepers to keep the ball for as long as and perhaps longer than the statically defined hand-coded 
policy. 
The setup for the evolved strategy was also quite simple, using ECJ and its parameter file specification 
of an evolutionary process. The representation of an individual was made up of two float values, these 
two values or genes together constituted a genome. This genome would then be manipulated via the 
process of single point crossover and mutation along with the raw fitness function (number of passes) 
over a maximum of 100 generations with a population size of 75.  The genome would be represented 
internally in ECJ as a FloatVectorIndividual.  This genome would then be modified via crossover and 
mutation.  The selection mechanism was a simple pipeline of tournament selection. In the case of 
FloatVectorIndividual mutation would be done using the default mutation method for 
FloatVectorsIndividuals. This default method works by randomizing genes within a predefined range.



The probability of crossover would be set arbitrarily at .7 in the initial runs and would be modified over 
future runs for further analysis. Similarly mutation probability was set at .05 initially.
Once the values for the parameters had been modified using ECJ the values for these parameters were 
fed back into the actual Keeper code the relative fitness of these new parameters would then be 
evaluated over 50 runs. This process would be continued until an ideal individual was found, in this 
case an ideal individual had to be able to pass consistently. The result of these experiments would be a 
comparison of the fittest evolved-strategy versus the hand-coded strategy.

5. Results

The total number of passes were recorded for each run up to 50 runs, the number of passes which 
corresponded directly with the fitness of an individual in the evolved case turned out to be very similar 
to that of  the hand-coded strategy.  It didn’t take long for the evolved strategy to arrive at optimal 
value’s for the parameter’s, in fact by generation 38 ECJ had evolved similar parameters for the two 
characteristics. So by generation 38 the evolved strategy could potentially equal that of the hand-coded 
policy. 

The average number of passes which was equal to 14.38 in the hand-coded policy and 11.23 in the 
evolved strategy turned out to be similar. Similarly the maximum number of passes was equal to 34 in
the hand-coded and 27 in the evolved strategy respectively. This similarity is not all that surprising 
given that the evolved values for the parameters were very similar. The same value was evolved for the 
sight characteristic while a slightly smaller value was evolved for the possession characteristic. These 
parameters also have a limited impact on the final solution due to the limitations the aggressive
strategy introduces. Also the parameters set in the hand-coded solution were optimal and hence the 
evolutionary process latched on to these same optimal values and this in turn leads to the similarity in 
the solutions. What perhaps would have been more interesting in terms of demonstrating the power of 
the evolutionary approach was when looking at earlier stages of the evolution when the parameters 
evolved were not as effective, but this is not was being evaluated; only an optimal result (the fittest)
would be used as a comparison as like has to be compared to like.

6. Conclusions & Future Work

Hand-coding of solutions to problems is something which programmers associate with some high art, a 
sort of black magic which requires a lot of learning, experience and intuition. It is something which 
develops over time so the whole idea that a computer could somehow program itself using some sort of 
Darwinian evolutionary system is at first quite starting and alien. It is a revolutionary idea. But a 
revolution can only bring about lasting change for the better if it offers an effective alternative to what 
currently exists. This has already been demonstrated in some areas of design[1]. With this in mind the 
EA approach has to be proven or at least demonstrated to be an effective alternative to traditional hand-
coded approaches. This paper was an attempt to quantify this effectiveness.      
It turned out that the evolutionary approach came up with a Keepaway strategy which had similar 
attributes as the hand-coded strategy in terms of how effective it was at keeping the ball. In this regard 
perhaps one can conclude that yes the evolutionary technique as suggested by Koza[1,6] and others is 
an effective way of getting practical results to programming problems from computers. In one respect 
it is quite disheartening to think that the evolutionary technique didn’t evolve a vastly superior solution 
but at least it has a similar ability and perhaps can be improved upon in the future. The limitations of 
the hand-coded aggressive strategy with it’s lack of finesse in terms of how it operates made this study 
less valid than it could have been had more intelligent solutions been used. The very fact that only two 
parameters were being evolved could be said to have acted as a girdle forcing the final results to have a 



certain shape.  Still, even given these limitations a quantitive comparison was found which 
demonstrated that evolved strategies can be just as effective as hand-coded ones.             
Future work might involve the use of a more effective passing strategy and a better measure of Keeper 
fitness which depends on time on the ball, how many passes completed successfully and how far on 
average the ball was kept away from the Attacker. This more realistic and powerful fitness measure 
may lead the evolutionary process to a better overall solution. Also an investigation into the 
effectiveness of some of the more refined strategies as proposed by Stone et al[9,10] and 
Gustafson[3,8] rather than the simple aggressive strategy could be analyzed and the effectiveness or 
otherwise of their strategies could be investigated. 
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