
A Comparison of a Hand-Coded Strategy versus an Evolved

Strategy for Keepaway Soccer

Ciarán Mullett

School of Computer Science & Informatics
University College Dublin

Abstract
Much has been said in the past about the effectiveness of Evolutionary Algorithms (EA’s) and their ability to
evolve solutions to various optimization problems[1,4,]. A lot has also been written as to the effectiveness of
evolved strategies for the Keepaway Soccer problem[2,3]. This paper is an attempt to place this performance

in context and quantify the relative strengths and weaknesses of a hand-coded strategy versus that of an
evolved strategy for keeping the ball. A good measure or this relative performance would be the amount of

time the ball is in the possession of the Keepers or the amount of passes completed by the Keepers during the
course of an individual Keepaway game or session. What was observed during the course of experiments was

that the evolved strategy did similarly in comparison to the hand-coded strategy at keeping the ball.
Therefore we can say that no major advantage accrues from using an evolutionary approach over the hand-

coded approach.

1. Introduction

Much of the literature of Evolutionary Algorithms and Evolutionary Computation waxes lyrical[1,4]
about the effectiveness of the evolutionary technique for finding good solutions to problems but little
concrete evidence of this is presented, sometimes it is said that EA’s produce human-competitive
results or better[1,6]. This paper is an attempt to concretize either way some of these views using the
Keepaway domain as a test bed.

EA’s were designed to prove or disprove the thesis that simulating evolution would provide a tool for
solving common optimization problems. EA’s based on simple models of natural evolution attempt in
some way to capture the essence of what makes natural evolutionary processes successful. There are
many different EA approaches available but they all share some commonality. EA’s are usually based
on populations of solutions which allow for parallel search processes. EA’s commonly have innovation
operators such as mutation which allow problems to be looked at from different perspectives. EA’s
also combine useful partial solutions to problems using recombination operators and grade solutions
based on a fitness function. A fitness function is a measure of the effectiveness of a solution to a given
problem. Selection is another important element in EA’s. Selection works by selecting the fittest
individuals from a set of solutions based on their individual fitness’s. The EA used in my experiment
was a real-valued EA whose aim was to modify two real parameter values and provide an effective
solution to the Keeper problem.

In Keepaway Soccer or just Keepaway, one team of Keepers tries to keep possession of a ball for as
long as possible given the attempts of an opposing Attacker to get the ball. The game is played on a
fixed size playing area , the number of keepers is greater than those of attackers but the Attackers are
much faster than the Keepers. In the particular implementation studied in this paper there were three
Keepers playing opposite a single Attacker. The Keepaway simulator used for the experiments was
that developed by Daniel Kuebrich for the MASON[7] environment. Daniel Kuebrich’s
implementation had extremely limited intelligence with both Keepers and Attackers simply following
the ball and then randomly kicking it away anywhere. Invariably the faster Attacker would be first to
the ball, kick it away randomly and only on the off chance that the attacker randomly kicked it into the
path of a Keeper would any Keeper ever get a touch of the ball. What was needed was an effective
hand-coded strategy for the keepers to act in a more structured manner and keep the ball using some
level of intelligence, this strategy would then be used as a comparison against a competing evolved

strategy developed using George Mason University's ECJ[11] evolutionary toolkit. Over a number of
runs it should then become clear as to which is the more effective strategy and hence some measure of
how well evolved strategies operate compared to hand coded strategies can be derived.

2. Strategies For Keepaway

The question here is what constitutes a good strategy for Keepaway. Most of the best hand-coded
strategies currently in operation are based on two basic methods;
HoldBall()
Pass()
Both these methods were implemented in slightly different ways in the systems of Gustafson[3,8] and
Stone et al[9]. With HoldBall() the keeper simply holds the ball in the one position for as long as
possible given the attackers attempts to get the ball. When HoldBall() is combined with a
knowledge as to the relative position of teammates and the location of the attacker a keeper can make
an informed decision as to how long to hold the ball before releasing it with a call to the pass method.
The pass method in many of the well established hand-coded strategies is also based on knowledge
acquired from the environment about the relative position of teammates and the location of the
Attacker. A good pass method such as that proposed by Stone, Sutton and Kuhlmann[5,9] has a
weighting scheme whereby potential passes by Keepers are weighted based on the angles between
Keepers and Attackers and the relative distances between Keepers. Gustafson also proposed some
interesting additions to theses strategies including, the additions of a method for keepers not currently
in possession to get into an open position[3] to make it easier for teammates to pass to them.
Another interesting strategy, and one which is used extensively in my hand-coded Keepaway strategy
is what I call an aggressive strategy whereby the Keepers strategy is not simply to focus on waiting to
receive the ball but to actively get the ball themselves at all times. This aggressive strategy has the
result that when the keepers have the ball they form a tight circle around the ball passing among
themselves thus not allowing the Attacker to easily win the ball without having to force itself through
the tight formation of the Keepers. Strategies such as the ones outlined can hold the ball for a few
seconds on average on a 100 x 100 playing field which is about as long as can be achieved at the
present time. An evolved strategy draws its individual genes and genome from some of the parameters
associated with these hand-coded strategies and then potentially evolves values for these parameters
which would allow the keepers to hold the ball for a longer time than a hand-coded strategy with it’s
statically defined parameters.

3. Tools

The two tools used in the experiments were MASON and ECJ.

3.1 MASON

MASON was designed to be a foundation on which to run large Java simulations. MASON was built
using Java and allows for the visualization of experiments in the Evolutionary Computation domain. In
the case of Keepaway it acts as a foundation on which the Keepaway simulation runs. One of the great
advantages of MASON as a simulation environment is that it “delineates between model and
visualization”[7], this separation of concerns allows you to focus primarily on the model and then think
about the visualization issues later. The Keepaway simulator already in MASON was that developed by
Daniel Kuebrich. Kuebrichs’ version of Keepaway was very basic indeed with only simple go-to
functionality for the keepers, they made no attempt to pass the ball and simply randomly kicked it away
when they could. The Keepaway interface can be seen in Figure 1 with the individual keepers chasing
the ball and a lone attacker doing likewise.

Figure 1 A View of the MASON Keepaway interface.

3.2 ECJ

ECJ is an Evolutionary Computation system written in Java. It is a highly flexible system which allows
all the various settings for an evolutionary experiment to be defined in a parameter file. These
individual parameter files can then be used in conjunction with the toolkit to do experiments. The
parameter file format is very flexible and allows you to easily modify parameters such as the
probability of crossover, type of selection mechanism, type of representation and any other important
parameters for individual experimental setups.

4. Experimental Setup

The experimental setup for the following experiments was quite simple. Both the hand-coded and the
strategy whose parameters had been evolved would be run 50 times with the total number of passes
recorded for both the evolved and hand-coded strategies for a single run. Each run would be terminated
as soon as an attacker gained possession of the ball. Statistical information could then be drawn from
the number of passes achieved in individual runs. These numbers could then be compared and it should
become clear which strategy was more effective.
The hand-coded policy as mentioned earlier was based on an aggressive strategy. This policy was seen
to be quite effective with the Keepers able to pass the ball successfully for a few seconds on average.
This policy was run 50 times and the statistical information taken from it.
The evolved strategy was based on a Evolutionary Algorithm(EA) representation of the parameters to
be evolved. It used a fixed size genome which encoded the two parameters that were identified as
important for the Keepers control mechanism. These two parameters were floating point values which
encoded the “sight” and kicking range parameters of the individual keepers respectively. These two
values were statically set to 100.0 and 1.25 respectively in the hand-coded strategy. These values were
seen to work effectively; the goal then was to evolve values for the parameters which would allow the
Keepers to keep the ball for as long as and perhaps longer than the statically defined hand-coded
policy.
The setup for the evolved strategy was also quite simple, using ECJ and its parameter file specification
of an evolutionary process. The representation of an individual was made up of two float values, these
two values or genes together constituted a genome. This genome would then be manipulated via the
process of single point crossover and mutation along with the raw fitness function (number of passes)
over a maximum of 100 generations with a population size of 75. The genome would be represented
internally in ECJ as a FloatVectorIndividual. This genome would then be modified via crossover and
mutation. The selection mechanism was a simple pipeline of tournament selection. In the case of
FloatVectorIndividual mutation would be done using the default mutation method for
FloatVectorsIndividuals. This default method works by randomizing genes within a predefined range.

The probability of crossover would be set arbitrarily at .7 in the initial runs and would be modified over
future runs for further analysis. Similarly mutation probability was set at .05 initially.
Once the values for the parameters had been modified using ECJ the values for these parameters were
fed back into the actual Keeper code the relative fitness of these new parameters would then be
evaluated over 50 runs. This process would be continued until an ideal individual was found, in this
case an ideal individual had to be able to pass consistently. The result of these experiments would be a
comparison of the fittest evolved-strategy versus the hand-coded strategy.

5. Results

The total number of passes were recorded for each run up to 50 runs, the number of passes which
corresponded directly with the fitness of an individual in the evolved case turned out to be very similar
to that of the hand-coded strategy. It didn’t take long for the evolved strategy to arrive at optimal
value’s for the parameter’s, in fact by generation 38 ECJ had evolved similar parameters for the two
characteristics. So by generation 38 the evolved strategy could potentially equal that of the hand-coded
policy.

The average number of passes which was equal to 14.38 in the hand-coded policy and 11.23 in the
evolved strategy turned out to be similar. Similarly the maximum number of passes was equal to 34 in
the hand-coded and 27 in the evolved strategy respectively. This similarity is not all that surprising
given that the evolved values for the parameters were very similar. The same value was evolved for the
sight characteristic while a slightly smaller value was evolved for the possession characteristic. These
parameters also have a limited impact on the final solution due to the limitations the aggressive
strategy introduces. Also the parameters set in the hand-coded solution were optimal and hence the
evolutionary process latched on to these same optimal values and this in turn leads to the similarity in
the solutions. What perhaps would have been more interesting in terms of demonstrating the power of
the evolutionary approach was when looking at earlier stages of the evolution when the parameters
evolved were not as effective, but this is not was being evaluated; only an optimal result (the fittest)
would be used as a comparison as like has to be compared to like.

6. Conclusions & Future Work

Hand-coding of solutions to problems is something which programmers associate with some high art, a
sort of black magic which requires a lot of learning, experience and intuition. It is something which
develops over time so the whole idea that a computer could somehow program itself using some sort of
Darwinian evolutionary system is at first quite starting and alien. It is a revolutionary idea. But a
revolution can only bring about lasting change for the better if it offers an effective alternative to what
currently exists. This has already been demonstrated in some areas of design[1]. With this in mind the
EA approach has to be proven or at least demonstrated to be an effective alternative to traditional hand-
coded approaches. This paper was an attempt to quantify this effectiveness.
It turned out that the evolutionary approach came up with a Keepaway strategy which had similar
attributes as the hand-coded strategy in terms of how effective it was at keeping the ball. In this regard
perhaps one can conclude that yes the evolutionary technique as suggested by Koza[1,6] and others is
an effective way of getting practical results to programming problems from computers. In one respect
it is quite disheartening to think that the evolutionary technique didn’t evolve a vastly superior solution
but at least it has a similar ability and perhaps can be improved upon in the future. The limitations of
the hand-coded aggressive strategy with it’s lack of finesse in terms of how it operates made this study
less valid than it could have been had more intelligent solutions been used. The very fact that only two
parameters were being evolved could be said to have acted as a girdle forcing the final results to have a

certain shape. Still, even given these limitations a quantitive comparison was found which
demonstrated that evolved strategies can be just as effective as hand-coded ones.
Future work might involve the use of a more effective passing strategy and a better measure of Keeper
fitness which depends on time on the ball, how many passes completed successfully and how far on
average the ball was kept away from the Attacker. This more realistic and powerful fitness measure
may lead the evolutionary process to a better overall solution. Also an investigation into the
effectiveness of some of the more refined strategies as proposed by Stone et al[9,10] and
Gustafson[3,8] rather than the simple aggressive strategy could be analyzed and the effectiveness or
otherwise of their strategies could be investigated.

References

1. Koza, John R. 1992. Evolutionary Algorithm - On the Programming of Computers by Means
of Natural Selection. The MIT Press

2. Luke, S. 1998. Evolutionary Algorithm produced competitive soccer softbot teams for
robocup97. In Genetic Programming (GP98) conference proceedings, Madison.

3. Gustafson, S. 2000 Layered learning in Evolutionary Algorithm for a co-operative robot
soccer problem. Masters Thesis. Kansas State University.

4. Banzhaf, W. Nordin, P et al. 1998. Evolutionary Algorithm – An Introduction. Morgan
Kaufmann Publishers Inc.

5. Kuhlmann, G.; Stone, P. 2003. Progress in Learning 3 vs. 2 Keepaway.Systems, Man and
Cybernetics, 2003. IEEE International Conference on
Volume 1, 5-8 Oct. 2003

6. Koza, John R, Keane, Martin A. et al. 2003 Evolutionary Algorithm IV: Routine Human-
Competitive Machine Intelligence.Kluwer Academic Publishers

7. Luke, S.Cioffi-Revilla, Panait, L.,Sullivan, K. 2004. MASON: A New Multi-Agent
Simulation Toolkit. Proceedings of the 2004 SwarmFest Workshop.

8. Gustafson, S et al. 2001. Layered Learning in Evolutionary Algorithm for a Cooperative
Robot Soccer Problem. Proceedings of EuroGP'2001, v. 2038 of LNCS, pages 291--301, Lake
Como, Italy, 18-20 April 2001. Springer-Verlag.

9. Stone, P. Sutton, R S. Kuhlmann, G. 2003. Reinforcement Learning for RoboCup-Soccer
Keepaway. Adaptive Behavior, 13(3):165-188.

10. Stone, P. Balch, T. Kreatzschmarr G. 2001. Keeping the Ball from CMUnited-99. Peter Stone
and David McAllester. "RoboCup-2000: Robot Soccer World Cup IV. Springer Verlag,
Berlin.

11. Luke, S. 2002 ECJ: A Java-based Evolutionary Computation and Genetic Programming
Research System. http://cs.gmu.edu/~eclab/projects/ecj/

