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Outline 

•  Memory usage in Genetic Programming  

•  Method for Building Racing Track Models in TORCS 

•  Experimental Results 

•  Conclusions and Future Work 
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Traditional Expression-tree GP 
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Indexed Memory: A Simple Addition to GP 

•  Read and Write primitives are added as new non-terminals in the 
language. 

•  Each GP expression-tree is given access to its own array of integers, 
indexed over the integers. 

•  Read(X) returns the value stored in memory position X, where X is 
of same type as the type of memory elements (i.e. Read(4) returns 
the fifth element of the array). 

•  Write(X, Y) returns the old value of a memory position X, and has 
the side effect of changing the value of position X to Y (i.e. Write(10, 
104) returns the value of memory position 10 and overwrites it to 
104). 

•  Program state refers to the contents of array during program 
execution. 
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An example 
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State Maintenance During Program Execution (1) 
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State Maintenance During Program Execution (5) 
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State Maintenance During Program Execution (9) 
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Program Execution Overview 

initial state 
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Scope for Research  

•  Is it possible to use program state to represent a model of a racing 
track? 

•  Can this model be utilised for navigation purposes? 

•  What is the best way to evolve programs with state using GP? 

•  What are the effects of stateful program representations to the 
evolutionary search?    

•  Test-bed used: The Open Car Racing Simulator 
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Cooperative Coevolution of Model-builder and Car-
controller Programs 
•  A multi-phasic fitness evaluation procedure: 

–  Phase A: Model Building based on sensory information.  
–  Phase B: Car Controlling with deprivation of sensory information. 

•  Fitness assignment is based on the second phase of fitness evaluation. 

•  Program representation employs a modular architecture that consists 
of two individual expression-tree branches that are coupled with a 
general-purpose two-dimensional data-structure. 
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Phase A: Information for Model Building  

•  Information required to build a model of the racing track: 
–  X (normalised within the range [0, 163] for ETrack5) 
–  Y (normalised within the range [0, 1621] for ETrack5) 
–  Angle between the car direction and track axis 
–  TrackEdgeSensors A, TrackEdgeSensors B, TrackEdgeSensors C 
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Phase A: Model Building Flow-chart 
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Phase B: Car-controlling Flow-chart  
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Fitness assignment: Combining Phases A & B 

UCD Natural Computing Research & Applications Group (NCRA) 

Model Building Phase	

 Car Controlling Phase	


Racing track model 

built in memory 

fitness 

TORCS race 



Program Representation Language 
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Method for Localisation 
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Experiment design 

•  Generational, Elitist GA 

•  Population size: 300 

•  Generations: 40 

•  Tournament size: 3 

•  Expression-tree initialisation: Ramped-half-and-half 

•  Subtree mutation and crossover (prob. set to 0.7 in favour of mutation) 

•  Multiobjective fitness function to be maximised:  

•  Race duration: 5,000 time-steps 

•  Racing track: Etrack5 

•  Maximum gear: constrained to gear 1 

•  Car1-trb1 speed: approx. 82Km/h 

•  Distance covered: approx. 2,320m within 5,000 time-steps 
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Performance Histograms 
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Heatmap of Read-Write Overlap 
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Conclusions 
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•  Successful cooperative coevolution of two programs that share 
memory. 

•  A fitness function that penalises a racing line that deviates heavily 
from the track’s center provides the necessary search bias towards the 
effective use of memory. 

•  Most evolved racing track models exploited a roughly isomorphic 
relation between the environment and the memory by mapping the 
car’s move in the racing track to an equivalent position in the 2D 
array.  

•  Indexed memory is a powerful extension to GP for the effective 
storage and retrieval of information. 

•  For future work: 
–  Study methods to allow agents to utilise the track model to plan. 
–  Generalisation of model-building ability. 



Thank you 
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