UCD CASL

Dr. Michael O'Neill Dr. Miguel Nicolau
 Ant Colony Optimisation

COMP30290 Natural Computing
COMP41190 Natural Computing and Applications

Natural Computing Algorithms

Social Algorithms

Inspiration

Ant Colony Optimisation

Ant-Foraging Behaviour

- Ant Colonies:
- Find shortest path between nest and food source.
- No memory;
- No cognitive maps;
- Colony builds map with pheromone trails;
- Stigmergy (indirect communication between agents through environment).

Ant Colony Optimisation

ACO

- Marco Dorigo (1991);
- Combinatorial Optimisation;
- TSP;
- Network Routing;
- Scheduling;
- Family of Algorithms:
- Extensions of Ant System (AS).

Ant Colony Optimisation

Representation

- Problem-dependent;
- Generally graph-based;
- Ant System (AS).

Ant Colony Optimisation

Path Choice

- Transition probability!

$$
\eta_{i j}=\frac{1}{d_{i j}}
$$

- $d_{i j}=$ distance from i to j.

$$
p_{i j}^{k}(t)=\frac{\tau_{i j}(t)}{\sum \tau_{i k}(t)}
$$

- $\tau_{i j}=$ pheromone between i and j.

$$
p_{i j}^{k}(t)=\frac{\left[\tau_{i j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}\right]^{\beta}}{\sum\left(\left[\tau_{i k}(t)\right]^{\alpha} \cdot\left[\eta_{i k}\right]^{\beta}\right)}
$$

- Parameterised rate of distance and pheromone.

Ant Colony Optimisation

Pheromone

- Trail Intensity:

$$
\tau_{i j}(t+1)=\tau_{i j}(t)(1-p)+d_{i j}
$$

- $p=$ Evaporation Rate.

ACO - Algorithm

- 24,978 Cities;

- $72,500 \mathrm{Km}$ tour (2004).

Santacilaus
 and the traveling salesman problem

 Traveling salesman problem explained

http://ncra.ucd.ie

ACO - TSP Representation

- Construction Graph
- Each ant builds a tour
- Follows pheromones
- Update pheromone trail after tour

$$
\begin{aligned}
\tau_{i j}(t+1)= & \tau_{i j}(t)(1-p)+\delta_{i j} \\
\tau_{i j}(t+1)= & \tau_{i j}(t)(1-p)+\sum_{k=1}^{m} \Delta \tau_{i j}^{k}(t) \\
& \Delta \tau_{i j}^{k}(t)= \begin{cases}\frac{Q}{L^{k}(t)}, & \text { if }(i, j) \in T^{k}(t) \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

ACO - TSP Representation...

- Tabu List

$$
\begin{aligned}
& p_{i j}^{k}(t)=\frac{\left[\tau_{i j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}\right]^{\beta}}{\sum\left[\tau_{i k}(t)\right]^{\alpha} \cdot\left[\eta_{i k}\right]^{\beta}} \\
& p_{i j}^{k}(t)=\frac{\left[\tau_{i j}(t)\right]^{\alpha} \cdot\left[\eta_{i j}(t)\right]^{\beta}}{\sum_{c \in C_{i}^{k}}\left[\tau_{i c}(t)\right]^{\alpha} \cdot\left[\eta_{i c}(t)\right]^{\beta}}, j \in C_{i}^{k}
\end{aligned}
$$

ACO

[Mason Demo]

Ants for clustering

- Brood Sorting
- Leptothorax unifasciatus
- Cemetery Formation
- Lasius niger
- Ants on x,y grid
- up, down, left, right

$$
\begin{aligned}
& P_{\text {pick }}=\left(\frac{k_{1}}{k_{1}+f}\right)^{2} \\
& P_{\text {drop }}=\left(\frac{f}{k_{2}+f}\right)^{2}
\end{aligned}
$$

Ants for clustering...

- pick_drop (Deneubourg Model)
- + Dissimilarity (Lumar \& Faieta Model)

$$
\begin{gathered}
f\left(o_{i}\right)=\max \left\{0, \frac{1}{s^{2}} \sum_{o_{j} \in \operatorname{Neigh}_{(s * s)}(r)}\left[1-\frac{d\left(o_{i}, o_{j}\right)}{\alpha}\right]\right\} \\
P_{p i c k}\left(o_{i}\right)=\left(\frac{k_{1}}{k_{1}+f\left(o_{i}\right)}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& P_{\text {drop }}\left(o_{i}\right)=2 f\left(o_{i}\right), \text { if } f\left(o_{i}\right)<k_{2} \\
& P_{\text {drop }}\left(o_{i}\right)=1, \text { if } f\left(o_{i}\right) \geq k_{2}
\end{aligned}
$$

Project Ideas

ACO

- Parameter study;
- Variations on Pheromone Update Equation;
- Applications:
- Clustering;
- Quadratic Assignment;
- Vehicle Routing;
- Network Routing;
- Graph Colouring;
- Knapsack;
- ...
- Global Heuristics.

Project Proposal

Checklist

- Run proposal idea past Mike and/or Miguel;
- Use template on website (max 2 pages);
- Submit printout to the School of CSI office;
- Deadline 3pm next Thursday 10th October;

Next Classes

- Tuesday 8th October - Project Clinic
- Thursday 10th October - Submission Deadline / No Lecture
- Tuesday 15th October - Natural Computing \& Creativity (Jonathan Byrne)
- Thursday 17th October - Individual Proposal Feedback with Mike \& Miguel (3-5pm)

