Origin of the Species

<table>
<thead>
<tr>
<th>Million Years Ago</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Origin of Life</td>
</tr>
<tr>
<td>3500</td>
<td>Bacteria</td>
</tr>
<tr>
<td>1500</td>
<td>Eukaryotic Cells</td>
</tr>
<tr>
<td>600</td>
<td>Multicellular Organisms</td>
</tr>
<tr>
<td>1</td>
<td>Human Language</td>
</tr>
</tbody>
</table>

![Evolution illustration](http://ncra.ucd.ie)
Origin of the Species

Milestones

~ 200y.a. Jean-Baptiste Lamarck:
 Lamarckism or soft-inheritance:
 - Passing of lifetime acquired characteristics.

~ 140y.a. Charles Darwin:
 Theory of Natural Selection:
 - Natural vs. Artificial Selection (a.k.a. breeding).

~ 140y.a. Gregor Johann Mendel:
 Mendelian Inheritance:
 - Basis of Modern Genetics.

~ 80y.a. Fisher, Haldane & Wright:
 Population Genetics:
 - Combined evolution, genetics, and statistical probabilities.
Origin of the Species

Milestones

∼ 60y.a. **James D. Watson**:
Helix structure of DNA:
- Watson-Crick base paring of nucleotides.

∼ 60y.a. **Francis Crick**:
Helix structure of DNA:
- Watson-Crick base paring of nucleotides.

∼ 40y.a. **Motoo Kimura**:
Neutral Theory of Molecular Evolution:
- Variation at molecular level likely result of genetic drift.

∼ 40y.a. **Richard Lewontin**:
Molecular Diversity:
- Evolution at molecular level.
Origin of the Species

But...

Epigenetics: back to Lamarckism!
Chromosomes:
- composed of Deoxyribonucleic acid: **Genetic fingerprint of individuals**;
- Located in nucleus (eukaryotes) or cytoplasm (prokaryotes);
- Double helix of base pairs: Adenine, Thymine, Guanine and Cytosine;
- Sequence of genes;
- Exons and Introns;
- Genome.
Sequence Space

- Individual
 - Chromosome
 - Gene
 - Exon
 - Intron
 - Genome

- Genome lives in Sequence Space

<table>
<thead>
<tr>
<th>Organism</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Virus</td>
<td>10000</td>
</tr>
<tr>
<td>Bacterium</td>
<td>4 Million</td>
</tr>
<tr>
<td>Humans</td>
<td>3.5 Billion</td>
</tr>
</tbody>
</table>
Evolutionary Computation

Brief History

- Evolution with computers can be traced back to 1948 (Turing);
- First PhD in Computer Science (John Holland, 1959) popularised Genetic Algorithms;
- 1960s: Genetic Algorithms vs. Evolution Strategies (Evolutionary Programming);
- 1985: First Conference;
- 1992: Genetic Programming (1st instance 1958!);
- 1990s: Unified under EC.
Evolutionary Computation

- Evolution Strategies
- Evolutionary Programming
- Genetic Algorithms
- Genetic Programming
- Differential Evolution

- Grammatical Evolution
- Grammatical Evolution by Grammatical Evolution
- \(\pi \) Grammatical Evolution
- Grammatical Differential Evolution
Evolutionary Computation

\[x[t + 1] = r(v(s(x[t]))) \]

Evolutionary Algorithm

- Initialise Population;
- While (termination condition FALSE):
 - select Parents;
 - create Offspring;
 - Update Population;
- EndWhile
Polar Bear Example

- World’s largest carnivore;
- Descendent of Brown Bear;
- Separate evolution for last 4-5 million years;
- Clear/White Fur;
- 4 Legs;
- Furred Soles;
- Broad Forepaws;
- Large and Stocky:
 - 1.8-2.5m length (tip of nose to tail);
 - 150-800kg.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Legs</th>
<th>Soles</th>
<th>Forepaws</th>
<th>Length</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>30.4cm</td>
<td>2.2m</td>
<td>785.4kg</td>
</tr>
</tbody>
</table>

Category Integer Boolean Float Float Float
Polar Bear Example

<table>
<thead>
<tr>
<th>Colour</th>
<th>Legs</th>
<th>Soles</th>
<th>Forepaws</th>
<th>Length</th>
<th>Weight</th>
<th>Fitness</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>30.4cm</td>
<td>2.2m</td>
<td>785.4kg</td>
<td>20 years</td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>4</td>
<td>Furred</td>
<td>29.9cm</td>
<td>1.1m</td>
<td>203.7kg</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>No Fur</td>
<td>15.4cm</td>
<td>1.8m</td>
<td>771.6kg</td>
<td>10 years</td>
<td></td>
</tr>
</tbody>
</table>

Average Fitness of Population = 11 years
Best Individual Fitness = 20 years
Polar Bear Example (Selection)

- Fitness=10: 30%
- Fitness=3: 9%
- Fitness=10: 30%
- Fitness=20: 61%
Polar Bear Example (Variation)

Parents:
<table>
<thead>
<tr>
<th>Colour</th>
<th>Legs</th>
<th>Soles</th>
<th>Forepaws</th>
<th>Length</th>
<th>Weight</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>30.4cm</td>
<td>2.2m</td>
<td>785.4kg</td>
<td>20 years</td>
</tr>
<tr>
<td>Brown</td>
<td>4</td>
<td>Furred</td>
<td>29.9cm</td>
<td>1.1m</td>
<td>203.7kg</td>
<td>3 years</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>No Fur</td>
<td>15.4cm</td>
<td>1.8m</td>
<td>771.6kg</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Offspring:
<table>
<thead>
<tr>
<th>Colour</th>
<th>Legs</th>
<th>Soles</th>
<th>Forepaws</th>
<th>Length</th>
<th>Weight</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>31.2cm</td>
<td>2.2m</td>
<td>798.1kg</td>
<td>23 years</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>29.5cm</td>
<td>1.9m</td>
<td>778.1kg</td>
<td>15 years</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>No Fur</td>
<td>15.4cm</td>
<td>1.7m</td>
<td>741.6kg</td>
<td>7 years</td>
</tr>
</tbody>
</table>
Polar Bear Example (Replacement)

Several approaches possible;
Generational population (offspring replace parents).

New Population:

<table>
<thead>
<tr>
<th>Colour</th>
<th>Legs</th>
<th>Soles</th>
<th>Forepaws</th>
<th>Length</th>
<th>Weight</th>
<th>Fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>31.2cm</td>
<td>2.2m</td>
<td>798.1kg</td>
<td>23 years</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>Furred</td>
<td>29.5cm</td>
<td>1.9m</td>
<td>778.1kg</td>
<td>15 years</td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>No Fur</td>
<td>15.4cm</td>
<td>1.7m</td>
<td>741.6kg</td>
<td>7 years</td>
</tr>
</tbody>
</table>

Average Fitness of Population = 15 years
Best Individual Fitness = 23 years
Evolutionary Computation

Black Art of EC

- Population-based search;
- Stochastic;
- Design representation;
- Design fitness measure;
- Design algorithm (e.g., balanced variety generation operators and selection pressure).
Evolutionary Computation

Applications

- Too many to list!
- Engineering
- Design
- Sound Synthesis
- Circuit Design
- Games
- Financial Modelling
- Bioinformatics
- Human-competitive results
Evolutionary Computation

Funes & Pollack (1997)
Evolutionary Computation

Karl Sims (1991)
Evolutionary Computation

Al Biles (1993)
GenJam
Evolutionary Computation

Natural Computing Research and Applications (NCRA) Group
Evolutionary Computation

[video]
Next Classes

▶ Lecture Tuesday 17th September 15h - 16h (Genetic Algorithms - Mike);
▶ Lecture Thursday 19th September 15h - 16h (Genetic Programming #1 - Miguel);