
Representing Classification Problems in Genetic Prograimming

0-7803-6657-3/01/$10.00 02001 IEEE 1070

Thomas Loveard
Department of Computer Science

Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne Victoria 3001, Australia

tom1 @cs.rmit.edu.au

Abstract- In this paper five alternative methods are pro-
posed to perform multi-class classification tasks using ge-
netic programming. These methods are: Binary decom-
position, in which the problem is decomposed into a set
of binary problems and standard genetic programming
methods are applied; Static range selection, where the
set of real values returned by a genetic program is di-
vided into class boundaries using arbitrarily chosen divi-
sion points; Dynamic range selection in which a subset of
training examples are used to determine where, over the
set of reals, class boundaries lie; Class enumeration which
constructs programs similar in syntactic structure to a de-
cision tree; and evidence accumulation which allows sep-
arate branches of the program to add to the certainty of
any given class.

Results showed that the dynamic range selection
method was well suited to the task of multi-class clas-
sification and was capable of producing classifiers more
accurate than the other methods tried when comparable
training times were allowed. Accuracy of the generated
classifiers was comparable to alternative approaches over
several datasets.

1 Introduction

Genetic programming (GP) is a way of automatically con-
structing computer programs using a process analogous to bi-
ological evolution [6]. As a relatively new approach to prob-
lem solving, GP has been applied to a range of tasks including
that of classification [3,4,5].

Due to the extremely flexible nature of computer programs
to represent solutions to problems, GP methods of problem
solving have a great advantage in their power to represent
solutions to complex problems, and this advantage remains
true in the domain of classification. This flexibility of rep-
resentation gives genetic programs the capacity to represent
classification problems with means unavailable to other com-
monly used classification techniques such as decision trees,
statistical classifiers and neural networks. Because of this it
is possible that GP methods could be more suited to some
classification problems than other classification methods.

One advantage of using the GP methodology for classifi-
cation tasks is that the more training time that is allowed the
more accurate (to the point where over-fitting begins to oc-
cur) the classifier can be trained. If large amounts of time

Victor Ciesielski
Department of Computer Science

Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne Victoria 3001, Australia

vc@cs.rmit.edu.au

are available to train classifiers then this time can be utilised
to better train genetic classifiers. This is an advantage over
some other methods for performing classification (eg. C4.5),
which will always produce the same classifier regardless of
the amount of time available for traiining. Another advantage
for GP is that each run is probabilistic and different runs at-
tempting to solve the same problem will virtually never pro-
duce the same result. Such variability of the final solution
lends GP classifiers well to a voting strategy, which is often
able to produce more accurate classiification results.

Of great importance to any programming language’s ca-
pacity to represent a solution to a problem are the syntactic
rules of the language and the set of primitive functions, types
and operators in the language. This remains true for genetic
programs, and when formulating such rules and primitives for
a GP system for classification, the choice as to which rules
and primitives to employ is one of uncertainty.

The aim of the research is to explore methods by which
multi-class classification can be implemented within the GP
paradigm and to identify which of these methods are most
suited to the task of classification in terms of accuracy of clas-
sification and the amount of time needed to arrive at accurate
solutions. Five alternative program representation methods,
comprised of different syntactic rules, language primitives
and decision strategies are developed and tested against a set
of classification tasks.

1.1 Genetic Programming and Classification Tasks

Generally GP trees can perform cliissification by returning
numeric (real) values and then tranalating these values into
class labels [12, 131. For binary claissification problems the
division between negative and non-negative numbers acts as
a natural boundary for a division between two classes. This
means that genetic programs can easiily represent binary class
problems. Unfortunately, when more than two classes are
involved, finding meaningful division points over the set of
reds the genetic programs return is more difficult. If bound-
ary regions are chosen at arbitrary points over the set of reals
then genetic programs face the problem of not only contain-
ing the necessary elements to distinguish between classes, but
also must perform a translation task to provide output in the
necessary range pre-specified for a given class.

Several investigations have previously employed a GP
search strategy to generate a decision tree classifier [2, 91.
These investigations have shown the method to be capable

of producing accurate classifiers. Such classifiers do how-
ever limit the produced programs to decision tree structures,
which are more constrained (and thus less able to express cer-
tain problems) than standard genetic programs returning real
values.

Previous investigations into classification using GP have
produced accurate classifiers for binary class problems [3,4].
GP employed for classification tasks do however have a re-
quirement for long training times when compared to many
other classification methods. It is also often quite difficult to
extract a meaningful reason as to why a given class was cho-
sen. Because of these factors the GP method is seen to be
applicable to tasks where accuracy is the most important fac-
tor in classification, and training times and understandability
are seen as relatively unimportant.

2 The Datasets

A set of six datasets were chosen from the UCI Machine
Learning repository [13. These datasets were chosen because
they show variety in their domain, size and in the difficulty of
classification. They also vary in the number of target classes
for classification. All datasets were comprised of numeric or
binary attributes. These datasets were also used in [7] and
therefore allow direct comparison of results of GP classifiers
to results of well known classification methods. The data sets
are as follows:

1. Wisconsin Breast Cancer [8] (W.B.C): Consists of 2
classes and 10 numerical attributes with 699 instances.
Sixteen instances containing missing values were re-
moved for the purposes of classification in this investi-
gation. Error rates were estimated using ten fold cross
validation.

2. BUPA Liver Disorders (BUPA): Consists of 2 classes
and 6 numerical attributes with 345 instances. Error
rates were estimated using ten fold cross validation.

3. Pima Indians Diabetes (Pima): Consists of 2 classes
and 8 numerical attributes with 768 instances. Error
rates were estimated using ten fold cross validation.

4. Satlog Pixel (Pixel): Consists of 6 classes and 36 nu-
merical attributes with 4435 instances. Error rates were
estimated using an independent test set of 2000 in-
stances.

5. Thyroid disease (Thyroid): Consists of 3 classes with
15 binary attributes (considered to be numerical for this
investigation) and 6 numerical attributes. There were
3772 instances in the training set. Error rates were esti-
mated using an independent test set of 3428 instances.

6. Vehicle silhouette (Vehicle): Consists of 4 classes and
18 numerical attributes with 846 instances. Error ratcs
were estimated using ten fold cross validation.

3 Classifier Representation

Five alternative representation methods were implemented to
produce solutions for the classification problems listed above.
In each case strongly typed genetic programming [lo] was
used to construct genetic programs. For each method the ter-
minal and function sets were kept as similar as possible so
that the different GP methodologies had the same elements to
construct solutions for the classification tasks. It was neces-
sary to make some changes to the function and terminal set
for the implementation of each representation method.

The five representation methods used were:

3.1 Binary Decomposition of Classification Problem

Standard methods of genetic program representation are able
to perform binary classification tasks with a high degree of
accuracy [4, 121. Unfortunately, when more than two classes
are involved, finding meaningful division points over the set
of reals the genetic programs return, which then allow the out-
put of a program to be interpreted as more than two classes,
is more difficult. The problem of choosing arbitrary values
can be avoided however by decomposing a multi-class prob-
lem into a set of binary classification problems [3, 41. Given
a problem P with a set of n classes P = {cl, c2, ...cn}, the
problem can be decomposed into n - 1 binary classification
problems. The first binary problem will be to distinguish be-
tween classes {cl, .} where . is an amalgamation of all other
classes in the problem set. Ie: P - { cl}. The second problem
will be to classify (c2,y) where y is all remaining classes
P - {cl, c2}. This decomposition will continue until prob-
lem n - 1, which will consist of only {cn - 1, cn}, itself a
binary classification problem.

Once solutions to all binary classification problems can be
found, the amalgamation of these solutions forms a solution
to the problem as a whole. The error rate of such a classifier
would normally be found by applying the amalgamation of
solutions to a test set. Due to the difficulty of attaining such
an amalgamation initially in the GP methodology, in this
implementation the error rate of the solution is calculated
by adding the error rate of each component. Each binary
solution was therefore weighted to account for only the
section of the problem that it attempted to solve. The
calculation of the error rate for the overall problem was:

n-1

i=l

where i is a binary decomposition, P is the overall prob-
lem set, E(i) is the error rate of the solution for decompo-
sition i, and n is the number of distinct classes in the prob-
lem. This means that for the first binary decomposition the
error rate is simply added to the overall error rate as Iil will
be equal to IPI. The second decomposition will add only a
proportion of its error rate to the overall error rate as all ele-

1071

p Minus

Name
Random(-1, 1)

Attribute[x]

~~

Between

Retum Qpe Description
Double
Double Value of attribute x

Randomly assigned constant with value between -1 and 1

Retum Type
Double
Double
Double
Double

Double

Boolean
Boolean
Boolean
Boolean

Arguments
2
2
2
2

3

2
2
2
3

Argument ’hoes I Descriotion
Double, Double I Arithmetic addition
Double, Double
Double, Double
Double. Double

Boolean, Double, Double

Double, Double
Double, Double
Double, Double

Double, Double, Double

Arithmetic subtraction
Arithmetic multiplication
Protected arithmetic division
(divide by zero retums the value zero)
Conditional. If argl is true, then return
arg2, otherwise retum arg3
True if argl is less than or equal to ;3rg2
True if argl is greater than or equal to arg2
True if argl is equal to arg2
True if the value of argl is between the
values of arg2 and arg3

Table 1: Standard Function Set

ments of the first class have already been classified (error is
accounted for). This will continue until the error rate of each
decomposition has been added to the overall error rate.

This method of calculation of the error rate will lead to
a slight over-estimation of error in multi-class problems. For
each decomposition errors will fall into two categories. These
are either classifying an item of the target class as a class
belonging to the remaining set of classes, or classifying an
item from the remaining set of classes as an item of the tar-
get class. Over-estimation of the error occurs because of the
second type of error. In a real classification system built us-
ing this method, an item of data that was misclassified at a
higher level of decomposition but which actually belonged to
a lower level of decomposition would not then be passed on
to a lower level of decomposition for classification. In this
investigation any item that is misclassified at a higher level
of decomposition can still be misclassified at lower levels of
decomposition. In this scenario however the true rate of er-
ror cannot be any higher than the recorded error rate and the
amount of over-estimation is predicted to be minor. This is
because, for most problems, error rates are small, meaning
few items are misclassified, and thus the number of additional
items that would be considered by classifiers at lower levels
of decomposition is seen to be relatively small.

This approach uses the standard function and terminal sets
shown in Table 1 and 2 respectively.

An example program built using this representation
method can be seen in Figure 1. In this example the out-
put of the tree is a real number. Due to the conditional node
“IF”, the output of the tree will either be the value of attribute
5 multiplied by: the constant -0.5; or attribute 2 added to at-
tribute 7. If the constant value 0.23 is less than or equal to the
value of attribute 2 then it will be the former case, otherwise
the latter.

\

Figure 1: An example program tree for Binary Decomposi-
tion, Static Range Selection or Dynamic Range Selection

3.2 Static Range Selection

Genetic programs performing classification tasks generally
return real values and, as stated above, it is difficult to find
meaningful points over the set of real values to choose as
division points for class boundaries, particularly for multi-
class classification problems. In this approach we attempt
to choose boundary regions based on intuitive guesses about
the problem and likely points over the set of reds that class
boundaries might occur.

For binary problems (W.B.C, BUPA and Pima) the choice
for division is identical to that of the binary decomposition
method, as the split between negative and non-negative num-
bers is used to distinguish between class boundaries.

The Pixel dataset (6 classes) used the following ranges:
Class1 = [-inf, -51, Class2 = [-5, -11, Class3 = [-l,O], Class4
= [0, I], Class5 = [l , 51, Class6 = [5, infl.

For the Thyroid dataset (3 classes) the ranges used were:

1072

Classl = [-inf, -13, Class2 = [-1, 11, Class3 = 11, infl.
The Vehicle dataset (4 classes) used the following ranges:

Classl = [-inf, -11, Class2 = [-l,O], Class3 = [0, 11, Class4 =
[l , infl.

It is highly possible that the ranges chosen are not opti-
mal for each problem, but it is intuitive that programs will be
more readily able to produce results in these ranges because
all randomly assigned constants are within the range [-1, 11
and all attributes are scaled between [0, 11. Because it is not
possible to know the optimal ranges however these selected
values are as likely to perform well as any other values arbi-
trarily chosen.

This approach uses the standard function and terminal sets
shown in Table 1 and 2 respectively.

3.3 Dynamic Range Selection

An alternative approach to static range selection, where
ranges are arbitrarily chosen to correspond to class bound-
aries that all programs for the run must adhere to, is to allow
each program to use a separate set of ranges for class bound-
aries that are dynamically determined for each individual pro-
gram.

Given a classification problem with many training exam-
ples and an individual from a GP population it is possible to
use a subset of the training examples and record the values
that are returned when attributes for specific classes are used
as inputs. Based upon these outputs the effectively infinite
range of the reals can then be segmented into regions corre-
sponding to class boundaries based upon areas the program
has returned values for each class in the subset of training
examples.

There would be many possible methods of segmenting the
range of reals based on program outputs from a subset of
training examples. For the purpose of practicality this in-
vestigation limited the range for segmentation to that of [-
250,2501. This range is seen to be sufficiently large to allow
programs to distinguish between all possible classes in the
problem sets used in this investigation. The algorithm used
in this investigation for dynamically determining the ranges
for each program in the population is given in Figure 2. Note
that the output value for each training example is rounded to
the nearest integer. This rounding is performed to again limit
the effectively infinite space of the real numbers, but is seen
to still allow programs a necessary level of granularity over
this range to distinguish between class boundaries.

Once segmentation of the output ranges has been per-
formed the remainder of the training examples can then be
used to determine the fitness of the given individual.

This approach uses the standard function and terminal sets
shown in Table 1 and 2 respectively.

3.4 Class Enumeration

In this method a new data type is introduced called ClassType,
which is an enumerated type. The set of values that this type

FOR each example X within the
subset chosen for range selection {

OUTPUT = execute program with X as input
Round OUTPUT to nearest integer value
IF OUTPUT < -250 THEN OUTPUT = -250
IF OUTPUT > 250 THEN OUTPUT = 250
Increment GP-OUTPUTS[OUTPUTl [Class of XI

1

.FOR COUNT = -250 to 250
FOR all classes CL {

IF all values for CL
GP-OUTPUTS [COUNT]
RANGE [COUNT] = ” ? ”

Find CL €or which
1 ELSE {

in the vector
CL] are zero (

GP-OUTPUTS[COUNTl [CLI is greatest
RANGE[COUNT] = CL

1 1 1

FOR COUNT = -250 to 250 (
IF RANGE[COUNTI = ” ? ” {
RANGE[COUNTl = closest value to COUNT in

the RANGE vector whose
value is not ” ? “

1 1

Figure 2: Pseudocode for Dynamic Range Selection for a Ge-
netic Program

can store is limited to the number of different class types for
the given problem. A new terminal, ClassNum is also intro-
duced which returns a value of type ClassType, correspond-
ing to one of the possible classes in the problem. Properties
of this terminal can be seen in Table 4.

The program trees generated using this method of con-
struction will always return a value of type ClassType. To
facilitate the introduction of this new type, the “IF” function
is modified (as per Table 3) to return a ClassType value, and
the second and third argument are changed to accept only this
type. This means that child sub-trees stemming from the sec-
ond two arguments of an “IF” function can only hold another
“IF” function, or a ClassNum terminal.

An example program can be seen in Figure 3 (where Cx
refers to a ClassType terminal representing class z). Anal-
ysis of the structure of programs resulting from this method
of construction shows a degree of similarity to the structure
of decision tree classifiers such as C4.5 [l l] . Execution of
the program (in GP) or evaluation of the tree (in decision tree
algorithms) will follow from the root node, through a series
of conditional branches until a single leaf node, containing a
class label, is reached. The major difference in the structure
of the program trees produced by this GP approach to that
of decision trees produced by C4.5 is that at each conditional
branch of the tree the GP approach can consider almost any
arithmetic expression that is possible given the function and
terminal set. In contrast, conditional nodes of a C4.5 deci-

1073

Name
IF

Name 1 RetumQpe I Description
ClassNum I ClasstvDe 1 One. out of the Dossible set of classes for the given

Return Type Arguments Argument Types Description
ClassType 3 Boolean, ClassType, ClassType Conditional. If argl is true, thcn

return arg2, otherwise return arg3.

Table 4: Class Enumeration: Addition to the Standard Terminal Set

sion tree are only able to consider a single attribute value in
comparison to a fixed constant value. This gives the GP pro-
gram trees more freedom in their expressive capabilities, but
also increases the search space to be considered by the genetic
search.

Figure 3: An example program tree for Class Enumeration

3.5 Evidence Accumulation

This method allows many different branches of the program
trees to contribute to the decision to choose a certain class.
Aside from the program tree each genetic program also con-
tains a vector data storage area, termed the certainty vec-
tor. This vector contains one element for each possible class
within the problem. Before program execution all elements
of the certainty vector are initialised to zero. As the program
executes values are added (or subtracted) from certain ele-
ments of the vector through the operation of a new terminal
“AddToClass[x](-1, 1)” shown in Table 6 . This terminal will
add a value in the range -1 through 1, to one of the elements
of the certainty vector.

When program execution halts, the certainty vector is ex-
amined and the element with the highest value in the vector is
declared to be the most certain outcome for classification. In
the event that two or more elements share the highest value,
the results are inconclusive, and the outcome of classification
is considered to be an error.

Because the outcome of the classification lies within the
certainty vector it is not necessary for the program itself to
return a value. This change in requirements for the program

output means that an alteration to the conditional “IF’ func-
tion must be made and an addition to the function set is also
needed as shown in Table 5 . The “BLOCK’ function will ac-
cept from two to four arguments (this value is randomly cho-
sen when programs are first generated) and simply evaluates
each argument in a sequential order. This function is required
so that it is possible for multiple additions (or subtractions) to
the certainty vector are possible (with only conditional func-
tions only one addition per program would be possible).

An example program can be seen if Figure 4 (terminals of
the form An(z) indicates an AddToClass function which will
add to class n the certainty value of‘ z). In this example the
program will automatically add the value 0.3 to the class 1
element of the certainty vector. Then, depending on whether
attribute 3 is greater than or equal, clr less than the value 0.6,
it will either subtract 0.3, or add 0.7 to the certainty vector
of class 3. The final classification will be the class with the
greatest certainty value after execution.

\ /

Certajntv V

Figure 4: An example program tree for Evidence Accumula-
tion

3.6 System Parameters

Due to the probabilistic nature of GPs, it is not certain that
the outcome of one run will be the same as the output of any
other run over the same training data. To help ensure valid
results, each method was run ten times over each data set and
the recorded error rates were then averaged over the ten runs.

1074

Name 1 ReturnQpe I Arguments I Argument Types

c

Description

BLOCK(2,4)

Name 1 Returnnpe I Description
AddToClass[x](-1, 1) 1 NoValue 1 Add a value between -1 and 1 to the certainty value of class x

Table 6: Evidence Accumulation: Addition to the Standard Terminal Set

evaluate arg2, otherwise evaluate arg3.
NoValue 2-4 All NoValue Evaluate all arguments sequentially.

All numeric attributes accross the datasets were scaled to
a range of 0 through 1. Each run consisted of a population
size of 500 individuals, except for those against datasets with
independent test sets for error evaluation. Population size for
these two datasets (Pixel and Thyroid) was 1000 individu-
als. The termination criteria for each run was either perfect
classification on the training set, or after 50 generations had
been processed. When moving to a new generation elitist
reproduction was used (lo%), whilst the remaining 90% of
individuals were selected for crossover using roulette wheel
selection. No individuals were selected for mutation. Pro-
grams were generated with an initial maximum depth of 6,
with overall program depth limited to 17.

Runs were conducted on a 4 processor ULTRA-SPARC4
and training times are given as a combination of user and sys-
tem CPU time for the runs.

4 Summary and Analysis of Results

Tables 7 and 8 show the results obtained from the GP runs for
test error rates and training times respectively. Classification
error rates and times are given as an average of ten runs.

For the first three datasets (all binary classification prob-
lems: W.B.C., BUPA and Pima) there appeared to be little
difference between the four methods of program representa-
tion. Dynamic range selection performed slightly better than
any other method in terms of accuracy of classification, while
class evaluation took slightly less time. The consistency of
each method (shown in the standard deviation of error) var-
ied only slightly over each dataset. Over all three datasets the
evidence accumulation method required a great deal more run
time. This is understandable, due to the “BLOCK’ function
leading to broader (and thus larger) programs and more eval-
uations of tree branches.

When the three multi-class problems were considered
(Pixel, Thyroid and Vehicle) the variation in training time,
accuracy, and consistency became much more distinct. The
binary decomposition and dynamic range selection classifiers
were far more accurate than the other three methods of classi-
fication, while the dynamic range selection method was more
consistent (lower standard deviation of error). The binary
decomposition method used a much longer period of time
to produce the classifiers in these problems when compared
to other methods, particularly in the case of the Vehicle and

Pixel datasets (the Thyroid dataset can possibly be seen as a
rare case amongst multi-class classification problems as 91 %
of instances belong to a singe class). The large amount of
time required for training the binary decomposition classi-
fiers for these multi-class problems is understandable, as sev-
eral GP runs must occur to produce a single classifier, where
methods like class evaluation and dynamic range selection
can produce a classifier for the problem in a single run.

Results for the Pixel and Vehicle datasets indicated that
dynamic range selection and class enumeration methods re-
sulted in classifiers of relatively high accuracy in multi-class
problems, but took less time to train than binary decompo-
sition methods. Because of this it was of interest to know
whether, given a greater amount of training time, such meth-
ods could exceed the classification accuracy of binary de-
composition. Figure 5 shows the progression of test error
rate as generations increased for the Pixel dataset for both
the dynamic range selection and class enumeration methods.
It can be seen that while dynamic range selection is able to
immediately produce more accurate classifiers in the initial
generation, it is slow to improve upon this fitness as genera-
tions progress. The class enumeration method begins with a
less accurate starting point, but is able to utilise the genetic
search process to improve fitness over time. However it can
be seen that in the last ten generations the rate of improve-
ment for the class enumeration and the dynamic range se-
lection is very small, suggesting class enumeration would be
unable to improve over the dynamic range selection method
were more time allowed for training this method. To deter-
mine whether this was the case, and to determine whether,
given comparable run time to the binary decomposition meth-
ods, these methods could outperform binary decomposition,
the dynamic range selection and class enumeration methods
were trialed again on the pixel and vehicle datasets. For the
pixel dataset population sizes of 2000 were used, whilst for
the vehicle dataset population sizes of 1000 were used. Runs
were processed for 80 generations. The results of these runs
showed that, when able to utilise the additional available run
time, the dynamic range selection method was able to equal
or surpass the binary decomposition method in terms of ac-
curacy of classification on both datasets (error rate of 0.161
for the pixel dataset in 8:21: 15, and error rate of 0.37 1 for the
vehicle dataset in 6: 1853). The class enumeration method
was however unable to surpass either binary decomposition

1075

Thyroid

Method W.B.C. BUPA PIMA
Binary Decomposition 2:27:59 1:16:29 1:56:55
Static Range Selection 2:27:59 1:16:29 1:56:55

Dynamic Range selection 2:16:37 1:13:07 1:35:56
Class Enumeration 1:50:31 1:04:11 1:27:51

Evidence Accumulation 5:07:52 3: 17:03 4:09:54

-
Pixel Thyroid Vehicle

8:50:12 1:56:01 6:22356
1:45:18 2:00:43 2:00:06
2:30:28 1:44:24 2:00:14
1:37:30 0:49:28 1:47:54
3:47:49 2: 19:50 6:0?:08

Table 8: Mean Run Times (H:MM:SS) for 10 Runs

or dynamic range selection methods (error rate of 0.236 for
the pixel dataset in 7: 13:3 1, and error rate of 0.382 for the
vehicle dataset in 65653). These results indicate that the dy-
namic range selection method was more readily able to per-
form both multi-class and binary classification than any other
method tried.

- Class Enumeration
Dynamic Range Selection

1 \

Figure 5 : Error Rate for Best of Generation Individuals for
the Pixel Dataset: Mean values over 10 Runs

The rank values given in Table 9 relate the results attained
by the GP classifiers to thirty-three alternative methods of
classification trained against these datasets in [7]. The rank
values given are that of the classifier that would be displaced
in rank (out of a possible of 33) by the genetic classifier. From
these rank values it can be seen that for the W.B.C and BUPA
datasets GP methods (and in particular dynamic range selec-
tion) are quite comparable to other contemporary methods of
classification used in [7]. For other datasets, particularly the

multi-class vehicle and pixel sets, it can be seen that the GP
approaches tried here rank poorly in the set of thirty-three
classifiers. However, in no case was a genetic classifier the
worst performer out of the thirty-three (this would have re-
sulted in a ranking of 34).

5 Conclusion and Future Work

The aim of this investigation was to explore alternative rep-
resentations and implementations of multi-class classification
problems within the GP paradigm, and determine which, out
of five representation methods developed and tested, was bet-
ter able to perform classification tasks. Each of the five meth-
ods resulted in classifiers that were competitive with the thirty
three classifiers examined in [7]. Of the five methods devel-
oped, results indicate that dynamic range selection is more
appropriate for both binary and mullti-class problems as it is
capable of producing classifiers of a higher degree of accu-
racy when comparable training times are allowed.

Results indicate that for some datasets GP classifiers
are capable of producing competitive results, and in other
datasets these classifiers perform re1 atively poorly when com-
pared to other classification methodologies.

Future work, involving the use of subset selection tech-
niques used in [4], dynamic selection of subsets used for the
evaluation of ranges for the dynamic range selection method,
larger populations and longer run times and the inclusion
of automatically defined functions to GP classifiers, could
substantially improve the performance of such GP classifiers
when compared with other classification techniques. It is also
possible to use the dynamic range selection method on mult-
class datasets after these datasets have been decomposed into
a set of binary datasets, as was performed in the binary de-
composition method used in this paper. This could further im-
prove the applicability of the dynamic range selection method
to mulit-class problems.

Another future adaptation to the GP approach to classifi-

-=

1076

Method 1 W.B.C. I BUPA I PIMA I Pixel I Thyroid I Vehicle
Binary Decomposition I 8 1 14 I 31 I 27 I 18 I 32
Static Range Selection

Dynamic Range selection
Class Enumeration

Evidence Accumulation

8 14 31 33 23 33
4 8 21 30 21 32
7 16 31 33 27 33
7 25 31 33 27 33

cation will be the inclusion of symbolic attribute information
into GP classifiers.

Acknowledgments

Thanks to the RMIT AI research group, in particular Ken
Gardiner, Dylan Mawhinney, Paul Boxer, Andy Song and
James Brusey for discussion and input into the ideas covered
here. Thanks also to Peter Wilson whose genetic program-
ming package was used for all GP runs.

Bibliography

C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

Martijn C. J. Bot and William B. Langdon. Applica-
tion of genetic programming to induction of linear clas-
sification trees. In Riccardo Poli, Wolfgang Banzhaf,
William B. Langdon, Julian F. Miller, Peter Nordin and
Terence C. Fogarty (editors), Genetic Programming,
Proceedings of EuroGP’2000, Volume 1802 of L.NCS,
pages 247-258, Edinburgh, 15- 16 April 2000. Springer-
Verlag.

J. Eggermont, A.E. Eiben and J.I. van Hemert. A com-
parison of genetic programming variants for data clas-
sification. In Proceedings on the Third Symposium on
Intelligent Data Analysis (IDA-99) LNCS 1642, 1999.

Chris Gathercole and Peter Ross. Dynamic training
subset selection for supervised learning in genetic pro-
gramming. In Yuval Davidor, Hans-Paul Schwefel and
Reinhard Manner (editors), Parallel Problem Solving
from Nature I l l , pages 312-321, Jerusalem, 9-14 Oc-
tober 1994. Springer-Verlag.

Helen Gray. Genetic programming for classification of
medical data. In John R. Koza (editor), Lute Breaking
Papers at the 1997 Genetic Programming Conference,
page 291, Stanford University, CA, USA, 13-16 July
1997. Stanford Bookstore.

John R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection. MIT
Press, 1992.

T.-S. Lim, W.-Y. Loh and Y.-S. Shih. A
comparison of prediction accuracy, complex-
ity, and training time of thirty-three old and

new classification algorithms. Machine Learn-
ing Journal, Volume 40, pages 203-228, 2000.
http:Nwww.stat.wisc.edu/p/stat/ftp/pubAoh/treeprogs/
quest 1.71.

[8] Olvi L. Mangasarian and W. H. Wolberg. Cancer di-
agnosis via linear programming. Technical Report CS-
TR-1990-958, University of Wisconsin, Madison, Au-
gust 1990.

[9] Robert E. Marmelstein and Gary B. Lamont. Pattern
classification using a hybrid genetic program decision
tree approach. In John R. Koza, Wolfgang Banzhaf,
Kumar Chellapilla, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max H. Garzon, David E. Goldberg,
Hitoshi Iba and Rick Riolo (editors), Genetic Program-
ming 1998: Proceedings of the Third Annual Confer-
ence, pages 223-23 1, University of Wisconsin, Madi-
son, Wisconsin, USA, 22-25 July 1998. Morgan Kauf-
mann.

[lo] David J. Montana. Strongly typed genetic program-
ming. Evolutionary Computation, Volume 3, Number 2,
pages 199-230,1995.

[111 J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1992.

[121 Walter Alden Tackett. Genetic programming for feature
discovery and image discrimination. In Stephanie For-
rest (editor), Proceedings of the 5th International Con-
ference on Genetic Algorithms, ICGA-93, pages 303-
309, University of Illinois at Urbana-Champaign, 17-21
July 1993. Morgan Kaufmann.

[131 Mengjie Zhang and Victor Ciesielski. Genetic program-
ming for multiple class object detection. In Norman Foo
(editor), Proceedings of the 12th Australian Joint Con-
ference on Art$cial Intelligence, Volume 1747, Lec-
ture Notes in Artificial Intelligence, pages 180-19 1.
Springer, Heidelberg, Dec 1999.

1077

